
Evolution-In-Materio: Solving Function Optimization
Problems Using Materials

Maktuba Mohid1, Julian F. Miller1, Simon L. Harding1, Gunnar Tufte2, Odd Rune Lykkebø2, Mark K. Massey3,
and Michael C. Petty3

1Department of Electronics, University of York, York, UK. Emails: [mm1159, julian.miller]@york.ac.uk,
slh@evolutioninmaterio.com

2Department of Computer and Information Science, Norwegian University of Science and Technology, 7491
Trondheim, Norway. Emails: [gunnart, lykkebo]@idi.ntnu.no

3School of Engineering and Computing Sciences and Centre for Molecular and Nanoscale Electronics, Durham
University, UK. Emails: [m.k.massey, m.c.petty]@durham.ac.uk

Abstract—Evolution-in-materio (EIM) is a method that uses
artificial evolution to exploit properties of materials to solve
computational problems without requiring a detailed understand-
ing of such properties. In this paper, we show that using a
purpose-built hardware platform called Mecobo, it is possible
to evolve voltages and signals applied to physical materials to
solve computational problems. We demonstrate for the first time
that this methodology can be applied to function optimization. We
evaluate the approach on 23 function optimization benchmarks
and in some cases results come very close to the global optimum
or even surpass those provided by a well-known software-based
evolutionary approach. This indicates that EIM has promise and
further investigations would be fruitful.

Keywords—evolutionary algorithm, evolution-in-materio, mate-
rial computation, evolvable hardware, function optimization

I. INTRODUCTION

Natural evolution can be seen as an algorithm which
exploits the physical properties of materials. Evolution-in-
materio (EIM) aims to mimic this by manipulating physical
systems using computer controlled evolution (CCE) [6], [7],
[8], [12]. In the main, EIM aims to exploit the properties
of physical systems for solving computational problems. It is
important to note, that one of unique features of EIM is that it
aims to exploit physical processes that a designer may either
be unaware of or not know how to utilize. This is discussed
in more detail in a recent review of EIM [13].

EIM was inspired by the work of Adrian Thompson who
investigated whether it was possible for unconstrained evo-
lution to evolve working electronic circuits using a silicon
chip called a Field Programmable Gate Array (FPGA). He
evolved a digital circuit that could discriminate between 1kHz
or 10kHz signal [16]. When the evolved circuit was analysed,
Thompson discovered that artificial evolution had exploited
physical properties of the chip. Despite considerable analy-
sis and investigation Thompson and Layzell were unable to
pinpoint what exactly was going on in the evolved circuits
[17].

Harding and Miller attempted to replicate these findings
using a liquid crystal display. They found that computer-
controlled evolution could utilize the physical properties of
liquid crystal to help solve a number of computational prob-
lems [4]:
• Two input logic gates: OR, AND, NOR, NAND, etc. [7].
• Tone Discriminator: A device was evolved which could

differentiate different frequencies [4].
• Robot Controller: A controller for a simulated robot

with wall avoidance behavior [5].

Previous work on evolution-in-materio has used either sili-
con in the form of an FPGA or a liquid crystal display [13].
Both these platforms are designed for other uses and it is
unclear whether these materials are particularly suitable for
evolution-in-materio. In addition, computational problems pre-
viously solved using these approaches have not been standard
computational benchmarks.

In this paper, we describe the use of a purpose built platform
called Mecobo that facilitates computer controlled evolution
of a material [10] for solving a computational problem. The
Mecobo platform has been developed within an EU funded
research project called NASCENCE [2]. The computational
material we have used in this investigation is a mixture of
single-walled carbon nanotubes and a polymer. This new
platform allows a variety of materials to be investigated in
custom designed electrode arrays, using a variety of electrical
signals and inputs. In addition NASCENCE is tasked with
assessing the utility of evolution-in-materio on a wide variety
of computational problems (including standard benchmarks).
In other very recent work, the technique has been applied to
solving travelling salesman problems [3], and classification
problems [15]. Here, we apply the technique, for the first time
to the benchmark problem of function optimization.

Evolutionary computation has been widely used to solve
complex multi-modal optimization functions. Here, we show
that using the Mecobo platform it is possible to evolve solu-
tions to benchmark function optimization problems. This is the978-1-4799-5538-1/14/$31.00 c© 2014 IEEE

first time EIM has been used to solve function optimization
problems. Our aim is not to claim EIM as a competitive method
for solving function optimization problems, we are simply
trying to apply EIM to standard computational benchmark
problems so that we have a yardstick to assess various aspects
of EIM using the Mecobo platform. For instance, what type
of signals are appropriate, what materials give the best results.
Using materials in the genotype-phenotype map has, at present,
some drawbacks. The main one is that it is slow (see later)
this means that we can only feasibly evaluate relatively few
potential solutions. However, it is a new approach to the
solution of computational problems and as the technology is
developed it could offer advantages over conventional compu-
tational methods [13].

To assess the feasibility of using the EIM method for
function optimization we needed to compare it with a software-
based evolutionary technique using the same number of func-
tion evaluations. To do this we have compared its performance
with that of Cartesian Genetic Programming (CGP) on the
same set of optimization benchmarks. We did this because we
have the CGP software to hand, and we have already shown
that the latter produces reasonable results [14].

The organization of the paper is as follows. In Sect. II
we give a conceptual overview of EIM. We describe the
Mecobo EIM hardware platform in Sect. III. The preparation
and composition of the physical computational material is de-
scribed in Sect. IV. Sect. V describes the function optimization
problem. The way we have used the Mecobo platform for
function optimization is described in Sect. VI. We describe
our experiments and analysis of results in Sect. VII. Finally
we conclude and offer suggestions for further investigation in
Sect. VIII.

II. CONCEPTUAL OVERVIEW OF
EVOLUTION-IN-MATERIO

EIM is a hybrid system involving both a physical material
and a digital computer. In the physical domain there is a
material to which physical signals can be applied or measured.
These signals are either input signals, output signals or con-
figuration instructions. A computer controls the application of
physical inputs applied to the material, the reading of physical
signals from the material and the application to the material
of other physical inputs known as physical configurations. A
genotype of numerical data is held on the computer and is
transformed into configuration instructions. The genotypes are
subject to an evolutionary algorithm. Physical output signals
are read from the material and converted to output data in
the computer. A fitness value is obtained from the output data
and supplied as a fitness of a genotype to the evolutionary
algorithm [13]. The conceptual overview of EIM has been
shown in figure 1.

In EIM a highly indirect genotype-phenotype mapping is
employed. One of its interesting features is that an evolutionary
algorithm may be able to exploit hitherto unknown physi-
cal variables in a material which may increase evolvability.
Software-only genotype-phenotype mappings are highly con-
strained. Natural evolution operates in a physical world and

Fig. 1: Concept of evolution-in-materio [13].

exploits the physical properties of materials (mainly proteins).
Banzhaf et al. discussed the importance of physicality and em-
bodiment [1]. Despite this, there have been very few attempts
to date to include materials in the evolutionary process.

Not all materials may be suitable for EIM. Miller and Down-
ing suggested some guidelines for choosing materials. The
material needs to be reconfigurable, i.e., it can be evolved over
many configurations to get desired response. It is important
for a physical material to be able to be “reset” in some way
before applying new input signals on it, otherwise it might
preserve some memory and might give fitness scores that
are dependent on the past behaviour. Preferably the material
should be physically configured using small voltage and be
manipulable at a molecular level [12], [13].

III. MECOBO: AN EVOLUTION-IN-MATERIO HARDWARE
PLATFORM

The Mecobo hardware platform has been designed and built
within an EU-funded research project called NASCENCE [2].

Mecobo is designed to interface a large variety of materials.
The hardware allows for the possibility to map input, output
and configuration terminals, signal properties and output mon-
itoring capabilities in arbitrary ways. The platform’s software
component, i.e. EA and software stack, is as important as
the hardware. Mecobo includes a flexible software platform
including hardware drivers, support of multiple programming
languages and a possibility to connect to hardware over the
internet makes Mecobo a highly flexible platform for EIM
experimentation [10].

It is important to appreciate that in EIM the computational
substrate is piece of material for which the appropriate physical

PWM ADC DAC

Scheduler

Time Pin Function
0 2 RECORD
3 1 PWM: 33
4 3 DAC: 837
19 4 DAC: 255
...
...
2 11 DAC: 42

address

data
Recorder

Digital I/O

Pin routing

Material

Fig. 2: Overview of the complete system.

variables to be manipulated by evolution may be poorly
understood (see Fig 1). This means that the selection of signal
types, i.e. inputs, outputs and configuration data, assignment to
I/O ports could easily not relate to material specific properties.
Thus interactions with the materials should be as unconstrained
as possible. This means that any I/O port should be allowed
by the hardware to accept any signal type. In addition, the
signal properties, e.g. voltage/current levels, AC, DC, pulse or
frequency, should be allowed to be chosen during evolution.
The Mecobo hardware interface is designed to handle all these
features. Many computational problems require input data so
the interface thus Mecobo has been designed to allow user-
defined external input data signals.

Figure 2 shows an overview of the hardware interface. In
the figure an example set up is shown in the dotted box. The
example genome defines pin 2 to be the output terminal, pin 1
to be the data input and pin 3 - 12 to be configuration signals.
The architecture is controlled by a scheduler controlling the
following modules: Digital I/O can output digital signals and
sample responses. Analogue output signals can be produced by
the DAC module. The DAC can be configured to output static
voltages or any arbitrary time dependent waveform. Sampling
of analogue waveforms from the material is performed by the
ADC. Pulse Width Modulated (PWM) signals are produced by
the PWM module.

The system’s scheduler can set up the system to apply and
sample signals statically or produce time scheduled configura-
tions of stimuli/response. The recorder stores samples, digital
discrete values, time dependent bit strings, sampled analogue
discrete values or time dependent analogue waveforms. Note
that the recorder can include any combination of these signals.

In the interface all signals pass a crossbar, i.e. pin routing.
Pin routing is placed between the signal generator modules
and the sampling buffer (PWM, ADC, DAC, Digital I/O and
Recorder) making it possible to configure any terminal of a
material to be input, output or receive configuration signals.

The material signal interface presented in Figure 2 is very
flexible. It not only allows the possibility to evolve the I/O
terminal placement but also a large variety of configuration
signals are available to support materials with different sensi-
tivity, from static signals to time dependent digital functions.
At present, the response from materials can be sampled as
purely static digital signals, digital pulse trains. The next
version of Mecobo will allow the direct input and output

of analogue signals. Further the scheduler can schedule time
slots for different stimuli when time dependent functions are
targeted or to compensate for configuration delay, i.e. when
materials need time to settle before a reliable computation can
be observed.

A. Hardware implementation
The hardware implementation of the interface is shown

as a block diagram in figure 3(a). Mecobo is designed as
a PCB with an FPGA as the main component. The system
shown in Figure 2 is part of the FPGA design together with
communication modules interfacing a micro controller and
shared memory. As shown in Figure 3(a) the digital and
analogue designs are split into two. All analogue components
are placed on a daughter board; such as crossbar switches and
analogue-digital converters. This allows the redesign of the
analogue part of the system without changing the digital part
of the motherboard. The system shown in Figure 3(a) is an
example of the current system. The micro controller stands as
a communication interface between the FPGA and the external
USB port.

Figure 3(b) shows the motherboard with the Xilinx LX45
FPGA, Silicon Labs ARM based EFM32GG990 micro con-
troller connected to a 12 terminal material sample.

At present the Mecobo hardware allows only two types of
inputs to the material: constant voltage (0V or 3.5V) or a
square wave signal. However, different characteristics or input
parameters associated with these inputs can be chosen. These
input parameters are described in Table I.

TABLE I: Adjustable Mecobo input parameters.

Parameter Description Note
Name
Amplitude 0 or 1 wave signal

corresponding amplitude
to 0V or 3.5V must be 1

Frequency Frequency of Irrelevant if
square wave fixed voltage
signal input

Cycle Percentage of Irrelevant if
Time period for which fixed voltage

square wave input
signal is 1

Phase Phase of Irrelevant if
square wave fixed voltage
signal input

Start Start time Measured in
time of applying milliseconds.

voltage to
electrodes

End End time Measured in
time of applying milliseconds.

voltage to
electrodes

The start time and end time of each input signal determines
how long an input is applied. Mecobo only samples using dig-
ital voltage thresholds, hence the material output is interpreted

FPGA

uC

Digital I/O pin headers

USB

SRAM

Motherboard

Daughterboard

AD AD AD AD DAC DAC DAC

Material

Xbar Xbar

(a) Mecobo block diagram.

(b) Picture of Mecobo.

Fig. 3: Hardware interface implementation overview.

as strictly high or low, (i.e. 0 or 1). In later versions of this
hardware, analogue inputs and outputs will be possible.

Also, in the case that an electrode is chosen to be read, a
user-defined output sampling frequency determines the buffer
size of output samples. If the output frequency is Fout, start
time Timestart and end time is Timeend, then the buffer size
is Bufsize is given by:

Bufsize = Fout(Timeend − Timestart)/1000 (1)

Here, Timestart and Timeend are measured in millisec-
onds.

However, in practice due to pin latency, the real buffer size
is generally smaller.

Fig. 4: Electrode array with sample.

IV. DESCRIPTION OF PHYSICAL COMPUTATIONAL
MATERIAL

The experimental material consists of single-walled carbon
nanotubes mixed with polymethyl methacrylate (PMMA) and
dissolved in anisole (methoxybenzene) 1. The sample is baked
causing the anisole to evaporate. This results in material which
is mixture of carbon nanotube and PMMA. The concentration
of carbon nanotube is 0.71% (weight% fraction of PMMA).

Carbon nanotubes are conducting or semi-conducting and
role of the PMMA is to introduce insulating regions within
the nanotube network, to create non-linear current versus
voltage characteristics. The idea is that this might show some
interesting computational behavior. Another benefit of the
polymer is to help with dispersion of the nanotubes in solution.
The preparation of experimental material is given below:
• A M3-sized nylon washer was glued on the electrode

array to contain the material whilst drying;
• 20 µL of material were dispensed into the washer;
• This was dried at ≈ 100o C for ≈1 h to leave a “thick

film”.
The experimental material is placed in the middle of a plate

of the electrode array. Twelve gold electrodes are connected
directly with the experimental material in the plate. The
electrode array is connected directly with the Mecobo board
via wires. The electrode sample is shown in Fig. 4.

V. FUNCTION OPTIMIZATION

Benchmark function optimization problem are functions,
f(xi) of a number (n) of real-valued variables, where i =
1, 2, . . . n. The aim is to obtain the values of xi which cause
f(xi) to be a minimum. In evolutionary computation many
complex, multi-modal functions have been designed whose
minima are known, but are challenging functions to minimise
using search algorithms. An example of such a function is
given in Eqn. 2 [19] and the two-dimensional version is
illustrated in Fig. 5. In general these functions have many
dimensions (typically 30).

f8(x) =

d∑
i=1

−xi sin(
√
|xi|) (2)

Optimization functions are typically defined over a variety
of ranges for each variable, xi. For instance, f8 is defined
over −500 ≤ xi ≤ 500 and has a global minimum given by
min(f8(x)) = f8(420.9687, ..., 420.9687) = −12, 569.5 [19].

1Mark K. Massey and Michael C. Petty prepared the materials used as
substrates and the electrode masks for our experiments

Fig. 5: Function optimization problem f8(x1, x2).

Here in this experiment, we have chosen 17/23 benchmark
functions (Function 1, 3 - 11, 14 - 16, 18, 21 - 23) from [19]
and 6/23 functions (Function 2, 12 - 13, 17, 19 - 20) from
[20].

VI. OPTIMIZING FUNCTIONS USING
EVOLUTION-IN-MATERIO

A. Methodology
The experiments were performed with an electrode array

having twelve electrodes. In the experiment, reported here,
one electrode has been used as output and the remaining
electrodes have been used as configuration voltages. No inputs
were needed. The configuration voltages affect the electrical
behaviour of the carbon nanotube-polymer material and the
interaction induces certain voltages on the output electrode. It
is this unknown mapping that is being exploited by computer-
controlled evolution.

We read a series of output values (0 or 1) from a buffer of
samples taken from a single electrode. These values were used
to define the value of a variable ‘xi’ in function optimization
problem (see Sect. V). As the optimization functions have
more than one dimension, more than one output from the
device was needed. In those cases, a split genotype technique
has been used. In this technique, we used a genotype consisting
of multiple chromosomes, each of which was applied to eleven
electrodes. On each application of a chromosome we read
the binary values in an output buffer of samples from the
remaining electrode. For instance, for a 30 variable optimiza-
tion problem we used 30 chromosomes. Each chromosome
defined which electrode would be read and which electrodes
would receive the configuration data (square waves or constant
voltage). There can be many other ways of using the twelve
electrodes. We could have read two electrodes and applied
evolved configuration data to the remaining ten and other
choices are possible. Examining other choices remains for
future work.

Using the Mecobo platform we can control the time (in
milliseconds) that a signal is applied to the material (see Sect.
III). Here, we accumulated output values in a buffer for 128

TABLE II: Description of genotype.

Gene Signal applied to, Allowed
Symbol or read from ith values

chromosome and
jth electrode

pi,j Which electrode 0, 1, 2 . . . 11
is used

si,j Type 0 (constant) or
1(square-wave)

ai,j Amplitude 0 , 1
fi,j Frequency 500 ,501 . . . 10K
phi,j Phase 1, 2 . . . 10
ci,j Cycle 0, 1, . . . 100

milliseconds. The number of samples of output buffer can be
controlled by start time, end time and frequency of output
electrode. In experiment, we used a 25KHz buffer sampling
frequency.

B. Genotype Representation
Each chromosome used ne = 12 electrodes at a time.

Associated with each electrode there were six genes which
either define which electrode was used as an output, or
characteristics of the input applied to the electrode: signal
type, amplitude, frequency, phase, cycle (see Sect. III). So
each chromosome required a total of 72 genes and a genotype
of 30 chromosomes required a total of 2106 (72x30) genes.
Mutational offspring were created from a parent genotype by
mutating a single gene (i.e one gene of 2106). The values
that genes could take are shown in Table II. The chromosome
index, i takes values 0, 1, . . . d − 1, where d is the number
of dimensions of the function optimization problem and the
electrode index, j takes values 0, 1, . . . ne − 1.
The ith chromosome, Ci is defined by:

Ci = pi,0si,0ai,0fi,0phi,0ci,0 . . . pi,11si,11ai,11fi,11phi,11ci,11

The genotype for a d dimensional problem is a collection of
d chromosomes: C0C1 . . . Cd−1

C. Output Mapping
To determine a real-valued output from a collection of ones

in an output buffer it was decided to use the fraction of ones.
However, initial findings revealed that the output buffer never
contained more than 40% ones. As a result, before the function
optimization experiment, an initial evolutionary investigation
was performed to discover the typical contents of an output
buffer under various conditions. The fraction of number of
ones in the output buffer was calculated to obtain the values of
the variable required to optimize functions. However, because
the buffer contained a maximum of 40% ones, the fraction of
ones was multiplied by 2.5 so that a real-valued output would
take values between 0 and 1. We denote this value by q.

In the initial investigation, evolutionary runs were carried
out to find the electrode configurations (which electrode is

used as output or configuration voltage, signal type, amplitude,
phase, cycle, frequency of configuration voltages) that gave
different percentages of ones in the output buffer. The different
percentages were 0%, 10%, 20%, 30% and 40%. The evolved
electrode configurations that gave these percentages were used
to seed the initial populations for the evolutionary runs for the
function optimization problems.

These real values determined from the fraction of ones in
the output buffer were linearly mapped to the ranges that
particular variables were allowed to take in various opti-
mization functions. This was done as follows. The value of
the fraction was then mapped using minimum and maximum
values of benchmark function. Let, maxi and mini be the
ranges allowed for a variable, xi in a function optimization
problem. Then the equation used for calculating the linearly
mapped output value, xi is given by:

xi = mini + (maxi −mini)q (3)

The linearly mapped output values xi were determined
corresponding to each chromosome to obtain the measured
vector minimizing the optimization function.

VII. EXPERIMENTS

Twenty-three benchmark functions of function optimization
problem were investigated. A 1 + λ−ES, evolutionary algo-
rithm with λ = 4 was used [11] and run for 5000 generations.
The 1 + λ−ES evolutionary algorithm has a population size
of 1 + λ and selects the genotype with the best fitness to be
the parent of the new population. The remaining members
of the population are formed by mutating the parent. The
experiment was performed over 10 independent runs in case
of each benchmark function. Only 10 runs were undertaken as
it took over 7 days for these experiments. Different functions
took different time due to different number of dimensions.
Elapsed time increased with the number of dimensions.

A. CGP experimental details
To evaluate the effectiveness of the EIM method for solving

function optimization problems we compared results with an
evolutionary search technique called Cartesian Genetic Pro-
gramming using a 1+4 evolutionary algorithm over the same
number of generations 2.

Cartesian genetic programming is a graph-based form of
genetic programming [11]. The genotypes encode directed
acyclic graphs and the genes are integers that represent where
nodes get their data, what operations nodes perform on the
data, and where the output data required by the user is to
be obtained. Five constant inputs (terminals) are generated
randomly in the interval [-1, 1] at the start of each evolutionary
run. The function set chosen for this study is defined over the
real-valued interval [-1.0, 1.0] and is shown in Table III.

The number of outputs is no = d, where d is the dimen-
sionality of the optimization problem. Since the terminals and
functions all return numbers in the interval [-1, 1] the program

2In both cases of experimental material and CGP, offspring replaced parents
if their fitness was greater than or equal to the parent

TABLE III: Node function gene values and their definition.

Value Definition

0
√
|z0|

1 z0
2

2 z0
3

3 (2exp(z0 + 1)− e2 − 1)/(e2 − 1)
4 sin(z0)
5 cos(z0)

6 |z0||z1|

7
√

(z02 + z12)/2
8 (z0 + z1)/2
9 (z0 − z1)/2
10 z0z1
11 if |z1| < 10−10 then 1

else if |z1| > |z0| then z0/z1
else z1/z0

12 if z0 > z1 then z2/2
else 1− z2/2

outputs, qi also have values defined in this range. However, as
noted previously, the optimization functions are defined over a
variety of intervals. Thus the program outputs, qi, need to be
mapped to the intervals defined in the optimization problem,
xi. Equation 4 gives the mapping.

xi =
maxi −mini

2
qi +

maxi +mini
2

. (4)

We used three mutation parameters. A probability of mu-
tating connections, µc, functions, µf and outputs, µo. In all
experiments µc = 0.01, µf = 0.03, and µo = 0.04.

We chose a linear CGP geometry by setting the number of
rows, nr = 1 and the number of columns, nc = 100 with
nodes being allowed to connect to any previous node.

B. Analysis of Results

The results of the two sets of experiments are compared
using the non-parametric two sided Mann-Whitney U-test and
the two-sample Kolmogorov-Smirnov (KS) test [9]. We also
computed with effect size [18] statistic . A U-or KS test
value of < 0.05 indicates that the difference between two
dataset is statistically significant. The effect size, A value
shows the important of this difference considering the spread
of the data; with values A < 0.56 showing small importance,
0.56 <= A < 0.64 medium importance and A >= 0.64
large importance. Therefore if a comparison between results is
shown to be statically significant with a medium/large effect
size, then we can be reasonably sure that any difference is not
due to under sampling.

The experiments show that in 7/23 functions the best results
with the experimental material are equal to optimum results
and in case of 11/23 functions the best results are very close
to optimum results. In 4 cases the average results with the
experimental material are equal to optimum results and in 13
cases average results are very close to optimum results. In
10/23 functions the best results of experimental material are
better than or equal to the best results of CGP. In case of
6/23 functions the average results of experimental material are

statistically better or at least equal to the average results of
CGP. For details see table IV.

It should be noted that CGP has been compared 3 with Dif-
ferential Evolution (DE), Particle Swarm Optimization (PSO),
Evolutionary Algorithm (SEA). Comparisons showed that in
15/20 benchmarks CGP is same or better than DE, in 19/20
cases CGP is same or better than PSO or SEA [14]. So CGP
itself is a competitive technique for function optimization.

VIII. CONCLUSIONS AND FUTURE OUTLOOK

Evolution-in-materio is hybrid of digital and analogue com-
puting where digital computers are used to configure materials
to carry out analogue computation. This holds the promise of
developing entirely new computational devices. A purpose-
built evolutionary platform called Mecobo, has been used
to evolve configurations of a physical system to obtain the
minima of complex, multi-modal mathematical functions. The
material used is a mixture of single-walled carbon nanotubes
and a polymer. The aim of the paper is not to show that the
experimental results of solving function optimization prob-
lems using EIM is competitive with state-of-the-art function
optimization algorithms but rather to start a new beginning
in the world of computation. This is the first time it has
been shown that such an approach can be used to solve well-
known benchmark function optimization problems. In some
cases, we found that we could find a solution closer to the
global optimum using the EIM approach than an effective
software-based evolutionary technique. In other work using
Mecobo it has been shown that digital logic functions can
be implemented [10]. We are currently obtaining encouraging
results on machine learning classification problems. In these
cases, in principle, a classifier can be implemented using an
electrode array and a material sample on a microscope slide
and some interfacing electronics. Such a system could act as
a standalone device. This could have utility in robot control.

There, of course, remain many questions for the future.
Does evolutionary computation in materio scale well on larger
problem instances. What other classes of computational prob-
lems are solvable using this technique? What are the most
suitable materials and signal types for evolution-in-materio?
The Mecobo platform is currently under development and the
next version will be able to allow the utilization of analogue
voltages. This may make some types of computational prob-
lems more readily solved using evolution-in-materio.

IX. ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number
317662.

3Based on average results over 30 independent runs, and 500000 evaluations
for each run

REFERENCES

[1] Banzhaf, W., Beslon, G., Christensen, S., Foster, J., Képès, F., Lefort,
V., Miller, J.F., Radman, M., Ramsden, J.: Guidelines: From artificial
evolution to computational evolution: a research agenda. Nature
Reviews Genetics 7, 729–735 (2006)

[2] Broersma, H., Gomez, F., Miller, J.F., Petty, M., Tufte, G.: NASCENCE
Project: Nanoscale Engineering for Novel Computation Using Evolu-
tion. International Journal of Unconventional Computing 8(4), 313–317
(2012)

[3] Clegg, K.D., Miller, J.F., Massey, M.K., Petty, M.C.: Travelling sales-
man problem solved ‘in materio’ by evolved carbon nanotube device. In:
Parallel Problem Solving from Nature - PPSN XIII - 13th International
Conference, Proceedings, LNCS, vol. 8672, pp. 692–701. Springer
(2014)

[4] Harding, S., Miller, J.F.: Evolution in materio: A tone discriminator
in liquid crystal. In: In Proceedings of the Congress on Evolutionary
Computation 2004 (CEC’2004), vol. 2, pp. 1800–1807 (2004)

[5] Harding, S., Miller, J.F.: Evolution in materio : A real time robot
controller in liquid crystal. In: Proceedings of NASA/DoD Conference
on Evolvable Hardware, pp. 229–238 (2005)

[6] Harding, S., Miller, J.F.: Evolution in materio. In: R.A. Meyers (ed.)
Encyclopedia of Complexity and Systems Science, pp. 3220–3233.
Springer (2009)

[7] Harding, S.L., Miller, J.F.: Evolution in materio: Evolving logic gates
in liquid crystal. International Journal of Unconventional Computing
3(4), 243–257 (2007)

[8] Harding, S.L., Miller, J.F., Rietman, E.A.: Evolution in materio: Ex-
ploiting the physics of materials for computation. International Journal
of Unconventional Computing 4(2), 155–194 (2008)

[9] Hollander, M., Wolfe, D.: Nonparametric statistical methods. Wiley
(1973)

[10] Lykkebø, O.R., Harding, S., Tufte, G., Miller, J.F.: Mecobo: A hardware
and software platform for in materio evolution. In: O.H. Ibarra,
L. Kari, S. Kopecki (eds.) Unconventional Computation and Natural
Computation, LNCS, pp. 267–279. Springer International Publishing
(2014)

[11] Miller, J.F. (ed.): Cartesian Genetic Programming. Springer (2011)
[12] Miller, J.F., Downing, K.: Evolution in materio: Looking beyond the

silicon box. In: NASA/DOD Conference on Evolvable Hardware, pp.
167–176. IEEE Comp. Soc. Press (2002)

[13] Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving
computation in materials. Evolutionary Intelligence 7, 49–67 (2014)

[14] Miller, J.F., Mohid, M.: Function optimization using cartesian genetic
programming. In: GECCO (Companion), pp. 147–148 (2013)

[15] Mohid, M., Miller, J.F., Harding, S.L., Tufte, G., Lykkebø, O.R.,
Massey, M.K., Petty, M.C.: Evolution-in-materio: Solving machine
learning classification problems using materials. In: Parallel Problem
Solving from Nature - PPSN XIII - 13th International Conference,
Proceedings, LNCS, vol. 8672, pp. 721–730. Springer (2014)

[16] Thompson, A.: Hardware Evolution - Automatic Design of Electronic
Circuits in Reconfigurable Hardware by Artificial Evolution. Springer
(1998)

[17] Thompson, A., Layzell, P.: Analysis of unconventional evolved elec-
tronics. Communications of the ACM 42(4), 71–79 (1999)

[18] Vargha, A., Delaney, H.D.: A critique and improvement of the cl
common language effect size statistics of mcgraw and wong. Journal
of Educational and Behavioral Statistics 25(2), 101–132 (2000)

[19] Vesterstrom, J., Thomsen, R.: A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems. In: Evolutionary Computation, 2004.
CEC2004. Congress on, vol. 2, pp. 1980 – 1987 (2004)

[20] Yao, X., Liu, Y.: Fast evolutionary programming. In: In L. J. Fogel et
al. (Eds.), Proceedings of the 5th Annual Conference on Evolutionary
Programming, pp. 451–460. MIT Press (1996)

TABLE IV: Comparative results of experimental material with CGP on 23 benchmark optimization functions. The best and average results
for both CGP and experimental material are computed from 10 independent evolutionary runs. All results are for 5000 generations. The “Res.”
column shows whether the results of experimental material is equal to or close to optimum or not. ‘X’ indicates the result is equal to or close to
optimum and ‘X’ indicates the result is not close to optimum. The first results of this column are according to the best results of experimental
material and the second results are according to the average results of experimental material. The “Com. Res.” column shows the comparison
between the best and average results of the experimental material with CGP. The ‘+’ indicates the result with the material is equal or better
than the result of CGP and ‘-’ indicates the result of experimental material is worse. The first result of this column shows comparison of best
results and second result of this column shows comparison of average results. “U-Test”, “KS-Test” and “Effect Size” columns show results of
statistical significance test. The statistical significance tests are performed over the results of all 10 runs of all 23 functions. ‘X’ of “U-Test”,
“KS-Test” columns indicates that the difference between the two datasets is statistically significant and ‘X’ indicates that the difference is not
statistically significant. ‘n/a’ of “U-Test” column indicates that the test is not applicable for the datasets. The tests are not applicable when all
the data of both of these datasets are same. In these cases all evolutionary runs in both cases (in-materio and CGP) converged to the known
global optimum.

No. Expected Best Average Best Average Res. Com. U-Test KS-Test Effect
Output Results Results Results Results Res. (<0.05) (<0.05) Size

of of of of
Experimental Experimental CGP CGP
Material Material

1 0 1.547937E-05 3.261765E-05 0 0 X X - - X X Large
2 0 1.013977E-02 2.372435E-02 0 0 X X - - X X Large
3 0 127.902 1614.87 3.938 3.064647E+03 X X - + X X Large
4 0 2.038043E-01 5.600358E-01 0 0 X X - - X X Large
5 0 1.136536E-01 3.871166E-01 27.690461 37.668384 X X + + X X Large
6 0 0 0 0 0 X X + + n/a X Small
7 0 3.813224E-03 1.071498E-02 1.398843E-03 1.082964E-02 X X - + X X Small
8 -12569.487 -12451.028 -12255.608 -12569.450 -12569.330 X X - - X X Large
9 0 2.992018 5.634806 0 0 X X - - X X Large
10 0 1.166181E-02 3.490709E-02 1.439820E-16 1.439820E-16 X X - - X X Large
11 0 3.395043E-03 8.345206E-02 0 0 X X - - X X Large
12 0 1.047303E-01 1.151369E-01 3.072479E-01 6.513926E-01 X X + + X X Large
13 0 4.336251E-05 1.587237E-04 7.415736E-06 1.176390E-03 X X - + X X Small
14 0.9980038 0.9980038 0.9980038 0.9980038 0.9980038 X X + + n/a X Small
15 0.0003075 3.084965E-04 3.430931E-04 4.437455E-04 1.059346E-03 X X + + X X Large
16 -1.0316284 -1.0316284 -1.0316229 -1.0316284 -1.0307720 X X + + X X Medium
17 0.397887 0.397887 0.397916 0.397887 0.397994 X X + + X X Medium
18 3.0 3.0 21.906419 3.0 3.0 X X + - X X Large
19 -3.86 -3.86 -3.86 -3.86 -3.86 X X + + n/a X Small
20 -3.32 -3.32 -3.32 -3.32 -3.286059 X X + + n/a X Small
21 -10.153196 -5.100772 -5.100771 -10.153199 -8.636950 X X - - X X Large
22 -10.402819 -5.128822 -5.128822 -10.402864 -8.820119 X X - - X X Large
23 -10.536284 -5.175645 -5.175644 -10.536290 -9.463113 X X - - X X Large

