
ar
X

iv
:q

ua
nt

-p
h/

03
12

02
2

v1

2
D

ec
 2

00
3

Quantum Search Algorithm with more

Reliable Behaviour using Partial Diffusion

Ahmed Younes∗ Jon Rowe †

School of Computer Science

University of Birmingham

Julian Miller ‡

Department of Electronics

University of York

November 16, 2006

Abstract

In this paper, we will use a quantum operator which performs the
inversion about the mean operation only on a subspace of the system
(Partial Diffusion Operator) to propose a quantum search algorithm
runs in O(

√

N/M) for searching unstructured list of size N with M
matches such that, 1 ≤ M ≤ N . We will show that the performance
of the algorithm is more reliable than known quantum search algo-
rithms especially for multiple matches within the search space. A
performance comparison with Grover’s algorithm will be provided.

1 Introduction

Quantum computers [6, 8, 12] are probabilistic devices, which promise to do
some types of computation more powerfully than classical computers [3, 15].
Many quantum algorithms have been presented recently, for example, Shor
[17] presented a quantum algorithm for factorising a composite integer into
its prime factors in polynomial time. Grover [10] presented an algorithm for
searching unstructured list of N items with quadratic speed-up over algo-
rithms run on classical computers.

∗Birmingham, Edgbaston, B15 2TT, United Kingdom , axy@cs.bham.ac.uk
†Birmingham, Edgbaston, B15 2TT, United Kingdom , jer@cs.bham.ac.uk
‡York, Heslington, YO10 5DD, United Kingdom, jfm@ohm.york.ac.uk

1

Grover’s algorithm inspired many researchers, including this work, to
try to analyze and/or generalize his algorithm [1, 4, 5, 9, 11, 18]. Grover’s
algorithm perfomance is near to optimum for a single match within the search
space, although the number of iterations required by the algorithm increases;
i.e. the problem becomes harder, as the number of matches exceeds half the
number of items in the search space [13] which is undesired behaviour for
a search algorithm since the problem is expected to be easier for multiple
matches.

In this paper, using a partial diffusion operation, we will show a quan-
tum algorithm, which can find a match among multiple matches within the
search space after one iteration with probability at least 90% if the number
of matches is more than one-third of the search space. For fewer matches
the algorithm runs in quadratic speed up similar to Grover’s algorithm with
more reliable behaviour, as we will see.

The plan of the paper is as follows: Section 2 gives a short introduction to
quantum computers. Section 3 introduces the search problem and Grover’s
algorithm performance. Section 4 and 5 introduce the proposed algorithm
with analysis on its performance and behaviour. And we will end up with a
conclusion in section 6.

2 Quantum Computers

2.1 Quantum Bits

In classical computers, a bit is considered as the basic unit for information
processing; a bit can carry one value at a time (either 0 or 1). In quantum
computers, the analogue of the bit is the quantum bit (qubit [16]), which
has two possible states encoded as |0〉 and |1〉; where the notation | 〉 is
called Dirac Notation and is considered as the standard notation of states
in quantum mechanics [7]. For quantum computing purposes, the states |0〉
and |1〉 can be considered as the classical bit values 0 and 1 respectively.
An important difference between a classical bit and a qubit is that the qubit
can exist in a linear superposition of both states (|0〉 and |1〉) at the same
time and this gives the hope that quantum computers can do computation
simultaneously (Quantum Parallelism). If we consider a quantum register
with n qubits all in superposition, then any operation applied on this register
will be applied on the 2n states representing the superposition simultaneously.

2

2.2 Quantum Measurements

To read information from a quantum register (quantum system), we must
apply a measurement on that register which will result in a projection of
the states of the system to a subspace of the state space compatible with the
values being measured. For example, consider a two-qubit system |φ〉 defined
as follows:

|φ〉 = α |00〉 + β |01〉 + γ |10〉 + δ |11〉 , (1)

where α, β, γ, and δ are complex numbers called the amplitudes of the system
and satisfy |α|2 + |β|2 + |γ|2 + |δ|2 = 1. The probability that the first qubit
of |φ〉 to be |0〉 is equal to

(

|α|2 + |β|2
)

. If for some reasons we need to have
the value |0〉 in the first qubit after any measurement, we must try some how
to increase its probability before applying the measurement. Note that, the
new state after applying measurement must be re-normalized so the total
probability is still 1.

2.3 Quantum Gates

In general, quantum algorithms can be understood as follows: Apply a series
of transformations (gates) then apply the measurement to get the desired
result with high probability. According to the laws of quantum mechanics
and to keep the reversibility condition required in quantum computation,
the evolution of the state of the quantum system |ψ〉 of size n by time t is
described by a matrix U of dimension 2n × 2n [13]:

|ψ′〉 = U |ψ〉 , (2)

where U satisfies the unitary condition: U †U = I, where U † denotes the
complex conjugate transpose of U and I is the identity matrix. For example,
the X gate (NOT gate) is a single qubit gate (single input/output) similar
in its effect to the classical NOT gate. It inverts the state |0〉 to the state
|1〉 and visa versa. It’s 2 × 2 unitary matrix takes this form,

X =

[

0 1
1 0

]

, (3)

and its circuit takes the form shown in Fig.(1). Notice that, from now on
we assume that a horizontal line used in any quantum circuit represents a

3

qubit and the flow of the circuit logic is from left to right. For circuits with
multiple qubits, qubits will be arranged according to the notation used in
the figure.

X(α |0〉 + β |1〉) (β |0〉 + α |1〉)

Figure 1: NOT gate quantum circuit.

Another important example is the Hadamard gate (H gate) which has
no classical equivalent; it produces a completely random output with equal
probabilities of the output to be |0〉 or |1〉 on any measurements. It’s 2 × 2
unitary matrix takes this form,

H =
1√
2

[

1 1
1 −1

]

, (4)

and its circuit takes the form shown in Fig.(2).

H|x〉 1√
2
(|0〉 + (−1)x |1〉)

Figure 2: Hadamard gate quantum circuit, where x is any Boolean variable.

Controlled operations are considered as the heart of quantum computing
[2], Controlled-U gate is the general case for any controlled gate with one or
more control qubit(s) as shown in Fig.(3.a). It works as follows: If any of
the control qubits |ci〉’s (1 ≤ i ≤ n − 1) is set to 0, then the quantum gate
U will not be applied on target qubit |t〉; i.e. U is applied on |t〉 if and only
if all |ci〉’s are set to 1. The states of the qubits after applying the gate will
be transformed according to the following rule:

|ci〉 → |ci〉 ; 1 ≤ i ≤ n− 1
|t〉 → |tCU 〉 = U c1c2...cn−1 |t〉 (5)

where c1c2...cn−1 in the exponent of U means the AND-ing of the qubits
c1, c2, ..., cn−1.

4

x

x

x

x

x

x

h

x

xh

...
...

|c1〉|c1〉 |c1〉 |c1〉
|c2〉|c2〉 |c2〉 |c2〉

|tCU〉|t〉 |t〉 |tCN〉
|cn−1〉|cn−1〉 |cn−1〉 |cn−1〉

U

b.Controlled-NOTa.Controlled-U

Figure 3: Controlled gates where the back circle • indicates the control
qubits, and the symbol ⊕ in part (b.) indicates the target qubit.

If U in the general Controlled-U gate is replaced with the X gate men-
tioned above, the resulting gate is called Controlled-NOT gate (shown in
Fig.(3.b)). It works as follows: It inverts the target qubit if and only if
all the control qubits are set to 1. Thus the qubits of the system will be
transformed according to the following rule:

|ci〉 → |ci〉 ; 1 ≤ i ≤ n− 1
|t〉 → |tCN〉 = |t⊕ c1c2...cn−1〉 (6)

where c1c2 . . . cn−1 is the AND-ing of the qubits c1, c2, . . . , cn−1 and ⊕ is the
classical XOR operation.

3 Search Problem

Consider a list L of N items; L = {0, 1, ..., N − 1}, and consider a function
f which maps the items in L to either 0 or 1 according to some properties
these items shall satisfy; i.e. f : L → {0, 1}. The problem is to find any
i ∈ L such that f(i) = 1 assuming that such i must exist in the list. It was
shown classically that we need approximately N/2 tests to get a result with
probability at least one-half. Let M denotes the number of matches within
the search space such that 1 ≤ M ≤ N and for simplicity and without loss
of generality we can assume that N = 2n. Grover’s algorithm was shown to

solve this problem [4] in O
(

√

N/M
)

. In [13], it was shown that the number

of iterations will increase for M > N/2 which is undesired behaviour for a
search algorithm. To over come this problem it was proposed in [13] that
the search space can be doubled so the number of matches always less than
half the search space and iterate the algorithm π/4

√

2N/M times so the

5

...
...

n
qubits

workspace
1 qubit

Measure

|0〉

|0〉

|0〉

|0〉

H

H

H

YUf

O
(

√

N/M
)

Figure 4: Quantum circuit for the proposed algorithm.

algorithm still runs in O
(

√

N/M
)

. But using this approach will double the

cost of space/time requirement. In the following section we will present an
algorithm that can find a solution for M > N/2 with probability at least
92.6% after applying the algorithm once.

4 The Algorithm

4.1 Iterating the algorithm once

For a list of size N = 2n, the steps of the algorithm can be understood
as follows as shown in Fig.(4):

1- Register Preparation. Prepare a quantum register of n+ 1 qubits all in
state |0〉, where the extra qubit is used as a workspace for evaluating
the oracle Uf :

|W0〉 = |0〉⊗n ⊗ |0〉 . (7)

2- Register Initialization. Apply Hadamard gate on each of the first n
qubits in parallel, so they contain the 2n states, where i is the integer
representation of items in the list:

|W1〉 =
(

H⊗n ⊗ I
)

|W0〉 =

(

1√
N

N−1
∑

i=0

|i〉
)

⊗ |0〉 . (8)

6

3- Applying Oracle. Apply the oracle Uf to map the items in the list to
either 0 or 1 simultaneously and stores the result in the extra workspace
qubit:

|W2〉 =
1√
N

N−1
∑

i=0

(|i〉 ⊗ |0 ⊕ f(i)〉) =
1√
N

N−1
∑

i=0

(|i〉 ⊗ |f(i)〉). (9)

4- Partial Diffusion. In this step, we will define a new operator: Partial
Diffusion Operator (Y) which works similar to the well known Diffusion
Operator used in Grover’s algorithm [10] except that it performs the
inversion about the mean operation only on a subspace of the system as
follows: The diagonal representation of the partial diffusion operator
Y when applied on n+ 1 qubits system can take this form:

Y = H⊗n ⊗ I (2 |0〉 〈0| − I)H⊗n ⊗ I, (10)

where the vector |0〉 used in Eqn.(10) is a vector of lenght P = 2N =
2n+1. Applying Y on a general system

∑P−1
k=0 δk |k〉; where, |δk|2 = 1,

can be understood as follows: Without loosing of generality, the general
system can be re-written as,

P−1
∑

k=0

δk |k〉 =
N−1
∑

j=0

αj (|j〉 ⊗ |0〉) +
N−1
∑

j=0

βj (|j〉 ⊗ |1〉), (11)

where {αj = δk : k even} and {βj = δk : k odd}, then applying Y on
the system gives,

Y

(

P−1
∑

k=0

δk |k〉
)

= (H⊗n ⊗ I (2 |0〉 〈0| − I)H⊗n ⊗ I)
P−1
∑

k=0

δk |k〉

= 2 (H⊗n ⊗ I |0〉 〈0|H⊗n ⊗ I)
P−1
∑

k=0

δk |k〉 −
P−1
∑

k=0

δk |k〉

=
N−1
∑

j=0

(2 〈α〉 − αj) (|j〉 ⊗ |0〉) −
N−1
∑

j=0

βj (|j〉 ⊗ |1〉),

(12)

7

x

x

x

...
...

...
...

...

H

H

H

X

X

X

X

X

X

U V

H

H

H

U =

[

−1 0
0 1

]

V =

[

−1 0
0 −1

]

n
qubits

Figure 5: Quantum circuit representing the Partial Diffusion Operator Y
over n + 1 qubits.

where 〈α〉 = 1
N

∑N−1
j=0 αj is the mean of the amplitudes of the subspace

∑N−1
j=0 αj (|j〉 ⊗ |0〉); i.e. applying the operator Y will perform the in-

version about the mean only on the subspace;
∑N−1

j=0 αj (|j〉 ⊗ |0〉) and
will only change the sign of the amplitudes for the rest of the system;
∑N−1

j=0 βj (|j〉 ⊗ |1〉), a circuit implementation using elementary gates
[2] is shown in Fig.(5).

The main idea of using the partial diffusion operator in searching is
to apply the inversion about the mean operation only on the subspace
of the system which includes all the states which represent the non-
matches and half the number of the states which represent the matches
while the other half will have the sign of their amplitudes inverted to
the negative sign preparing them to be involved in the partial diffusion
operation in the next iteration so the amplitudes of the matching states
get amplified partially each iteration. The benefit of this is to keep half
the number of the states which represent the matches as a stock each
iteration to resist the de-amplification behaviour of the diffusion oper-
ation when reaching the turning points as we will see when examining
the performance of the algorithm.

LetM be the number of matches, which makes the oracle Uf evaluate to
TRUE (solutions); such that 1 ≤ M ≤ N ; assume that

∑

i
′ indicates a

sum over all i which are desired matches (M states), and
∑

i
′′ indicates

a sum over all i which are undesired items in the list. So, the system
|W2〉 shown in Eqn.(9) can be written as follows:

8

|W2〉 =
1√
N

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) +
1√
N

N−1
∑

i=0

′ (|i〉 ⊗ |1〉). (13)

Applying Y on |W2〉 will result in a new system described as follows:

|W3〉 = a1

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) + b1

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) + c1

N−1
∑

i=0

′ (|i〉 ⊗ |1〉),

(14)

where the mean used in the definition of partial diffusion operator is,

〈α1〉 =

(

N −M

N
√
N

)

, (15)

and a1, b1 and c1 used in Eqn.(14) are calculates as follows:

a1 = 2 〈α1〉 −
1√
N

; b1 = 2 〈α1〉 ; c1 =
−1√
N
. (16)

Such that,

(N −M) a2
1 +Mb21 +Mc21 = 1. (17)

Notice that, the states with amplitude b1 was with amplitude zero
before applying Y .

5- Measurement. If we measure the first n qubits after the first iteration
(q = 1), we will get the desired solution with probability given as
follows:

i- Probability P
(1)
s to find a match out of the M possible matches;

taking into account that a solution |i〉 occurs twice as: (|i〉 ⊗ |0〉)
with amplitude b1 and (|i〉 ⊗ |1〉) with amplitude c1 as shown in
Eqn.(14), can be calculated as follows:

9

P
(1)
s = M (b21 + c21)

= M

(

(

2(N−M)

N
√

N

)2

+
(

−1√
N

)2
)

= 5
(

M
N

)

− 8
(

M
N

)2
+ 4

(

M
N

)3
.

(18)

ii- Probability P
(1)
ns to find undesired result out of the states can be

calculated as follows:

P (1)
ns = (N −M)a2

1. (19)

Notice that, using Eqn.(17),

P (1)
s + P (1)

ns = 1. (20)

4.1.1 Performance after Iterating the Algorithm Once

n, where N = 2n Max. prob. Min. prob. Avg. prob.
2 1.0 0.8125 0.875
3 1.0 0.507812 0.937500
4 1.0 0.282227 0.968750
5 1.0 0.148560 0.984375
6 1.0 0.076187 0.992187

Table 1: First iteration performance with different size search space.

Considering Eqn.(14) and Eqn.(18) we can see that the probability to find a
solution varies according to the number of matches M in the superposition.

From Table.1, we can see that the maximum probability is always 1.0,
and the minimum probability (worst case) decreases as the size of the list
increases, which is expected for small M because the number of states will
increase and the probability shall distribute over more states while the av-
erage probability increases as the size of the list increases. It implies that
the average performance of the first iteration of algorithm to find a solution
increases as the size of the list increases.

10

To verify these results, taking into account that the oracle Uf is taken
as a black box, we can define the average probability of success of the first
iteration of algorithm; average(P

(1)
s), as follows:

average(P
(1)
s) = 1

2N

N
∑

M=1

NCMP
(1)
s

= 1
2N

N
∑

M=1

N !
M !(N−M)!

.M (b21 + c21)

= 1
2N+1N3

N
∑

M=1

N !
(M−1)!(N−M)!

(10N2 − 16MN + 8M2)

= 1 − 1
2N
.

(21)

where NCM = N !
M !(N−M)!

is the number of possible cases for M matches.

We can see that as the size of the list increases (N → ∞), average(P
(1)
s)

shown in Eqn.(21) tends to 1.
Classically, we can try to find a random guess of the item, which repre-

sents the solution (one trial guess), we may succeed to find a solution with

probability P
(classical)
s = M/N . The average probability of success can be

calculated as follows:

average(P
(classical)
s) = 1

2N

N
∑

M=1

NCMP
(classical)
s

= 1
2N

N
∑

M=1

N.M
M !(N−M)!N

= 1
2
.

(22)

It means that we have an average probability one-half to find or not to
find a solution by a single random guess even with the increase in size of the
list.

Similarly, Grover’s algorithm has an average probabilty one-half after
arbitrary number of iterations as we will see. It was shown in [4] that the
probability of success of Grover’s algorithm after qG iterations is given by:

P (qG)
s = sin2((2qG + 1)θ), where, 0 < θ ≤ π

2
and sin2(θ) =

M

N
. (23)

The average probability of success of Grover’s algorithm after arbitrary
number of iterations is as follows (Appendix A in [18]):

11

average(P (qG)
s) =

1

2N

N
∑

M=1

NCM sin2((2qG + 1)θ) =
1

2
. (24)

Comparing the performance of the first iteration of the proposed algo-
rithm, first iteration of Grover’s algorithm and the classical guess technique,
Fig.(6) shows the probability of success of the three algorithms just men-
tioned as a function of the ratio (M/N).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M/N

P
ro

ba
bi

lit
y

Prop.Alg.
Grovers Alg.
Classical

Figure 6: A plot of the probability of success of the first the iteration of
proposed algorithm P

(1)
s , first iteration of Grover’s algorithm P

(1G)
s and the

classical guess P
(classical)
s as a function of the ratio (M/N).

We can see from Fig.(6) that the probability of success of the first iteration
is always above that of the classical guess technique. Grover’s algorithm
solves the case where M = N/4 with certainity and the proposed algorithm
solves the case where M = N/2 with certainity. The probability of success
of Grover’s algorithm will start to go below one-half for M > N/2 while the
probability of success of the proposed algorithm will stay more reliable with
propabilty at least 92.6%.

12

4.2 Iterating the Algorithm

If we consider iterating the algorithm, the iterating block will be applying the
oracle Uf and the operator Y on the system in sequence as shown in Fig.(4).
To understand the effect of each iteration on the system, we will trace the
state of the system during the first few iterations. Consider the system after
first iteration shown in Eqn.(14), second iteration will modify the system as
follows:

Apply the oracle Uf will swap the amplitudes of the states which represent
only the matches, i.e. states with amplitudes b1 will be with amplitudes c1
and states with amplitudes c1 will be with amplitudes b1 so the system can
be described as,

|W4〉 = a1

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) + c1

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) + b1

N−1
∑

i=0

′ (|i〉 ⊗ |1〉). (25)

Applying the operator Y will change the system as follows,

|W5〉 = a2

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) + b2

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) + c2

N−1
∑

i=0

′ (|i〉 ⊗ |1〉), (26)

where the mean used in the definition of partial diffusion operator is,

〈α2〉 =
1

N
((N −M) a1 +Mc1) , (27)

and a2, b2 and c2 used in Eqn.(26) are calculated as follows:

a2 = 2 〈α2〉 − a1; b2 = 2 〈α2〉 − c1; c2 = −b1, (28)

and the probabilities of the system are,

P
(2)
s = M (b22 + c22) = M (b22 + b21) .

P
(2)
ns = M (a2

2) = M (b2 + c2)
2 = M (b2 − b1)

2 .
(29)

In the same fashion, third iteration will give the following system,

Uf |W5〉 = |W6〉 = a2

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) + c2

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) + b2

N−1
∑

i=0

′ (|i〉 ⊗ |1〉)

(30)

13

Y |W6〉 = |W7〉 = a3

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) + b3

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) + c3

N−1
∑

i=0

′ (|i〉 ⊗ |1〉),

(31)
where the mean used in the definition of partial diffusion operator is,

〈α3〉 =
1

N
((N −M) a2 +Mc2) , (32)

and a3, b3 and c3 used in Eqn.(31) are calculated as follows:

a3 = 2 〈α3〉 − a2; b3 = 2 〈α3〉 − c2; c3 = −b2, (33)

and the probabilities of the system are,

P
(3)
s = M (b23 + c23) = M (b23 + b22) .

P
(3)
ns = M (a2

3) = M (b3 + c3)
2 = M (b3 − b2)

2 .
(34)

In general, the system after q ≥ 2 iterations can be described using the
following recurrence relations,

∣

∣W (q)
〉

= aq

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) + bq

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) + cq

N−1
∑

i=0

′ (|i〉 ⊗ |1〉), (35)

where the mean to be used in the definition of the partial diffusion operator
is as follows: For simplicity, let y = 1 − M

N
and s = 1√

N
, then

〈αq〉 = (yaq−1 + (1 − y)cq−1) , (36)

and aq, bq and cq used in Eqn.(35) are calculated as follows:

aq = 2 〈αq〉 − aq−1; a0 = s, a1 = s (2y − 1) , (37)

bq = 2 〈αq〉 − cq−1; b0 = s, b1 = 2sy, (38)

cq = −bq−1; c0 = 0, c1 = −s, (39)

and the probabilities of the system are,

14

P (q)
s = M

(

b2q + c2q
)

= M
(

b2q + b2q−1

)

. (40)

P (q)
ns = M

(

a2
q

)

= M (bq + cq)
2 = M (bq − bq−1)

2 . (41)

For q ≥ 2, Eqn.(37), Eqn.(38) and Eqn.(39) could be re-written as follows:

aq = 2yaq−1 − aq−2; a0 = s; a1 = s(2y − 1), (42)

bq = 2ybq−1 − bq−2; b0 = s; b1 = 2sy, (43)

cq = −bq−1; c0 = 0; c1 = −s, (44)

Solving the above recurrence relations (In Appendix A), the closed forms
are as follows (Proved in Appendix B):

aq = s

(

sin ((q + 1) θ)

sin (θ)
− sin (qθ)

sin (θ)

)

, (45)

bq = s

(

sin ((q + 1) θ)

sin (θ)

)

, (46)

cq = −s
(

sin (qθ)

sin (θ)

)

, (47)

where y = cos (θ) and 0 < θ ≤ π
2
. The above closed forms can be expressed

via the Chebyshev polynomials of the second kind Uq (y) [14], which are
defined as follows,

Uq (y) =
sin ((q + 1) θ)

sin (θ)
. (48)

This allows us to re-write the above closed form in terms of Chebyshev
polynomials of the second kind as follows,

aq = s (Uq − Uq−1) , (49)

bq = sUq, (50)

15

cq = −sUq−1, (51)

And the probabilities of the system,

P (q)
s = (1 − cos (θ))

(

U2
q + U2

q−1

)

. (52)

P (q)
ns = cos (θ) (Uq − Uq−1)

2 . (53)

Such that,

P
(q)
s + P

(q)
ns = M

(

b2q + c2q
)

+ (N −M) a2
q

= N
(

b2q + c2q
)

+ 2 (N −M) cqbq
= 1

sin2(θ)

(

sin2 ((j + 1) θ) + sin2 (jθ) − 2 cos (θ) sin ((j + 1) θ) sin (jθ)
)

= 1
sin2(θ)

(

cos2 (jθ) sin2 (θ) − sin2 (jθ) cos2 (θ) + sin2 (jθ)
)

= 1
sin2(θ)

((

1 − sin2 (jθ)
)

sin2 (θ) − sin2 (jθ)
(

1 − sin2 (θ)
)

+ sin2 (jθ)
)

= sin2(θ)

sin2(θ)
= 1.

(54)

4.2.1 Performance of Iterating the Algorithm

Now, we have to calculate how many iterations, q, are required to find the
matches with certainty or near certainty for different cases of 1 ≤M ≤ N . To
find a match with certainty on any measurement, then P

(q)
s must be as close

as possible to certainty. To calculate the number of iterations, q, required to
satisfy this condition, we need the following theorem.

Theorem 4.1 Consider the following relation,

(1 − cos (θ))
(

U2
q + U2

q−1

)

= 1, (55)

where Uq (y) is Chebyshev polynomials of the second kind, y = cos (θ) and
0 < θ ≤ π

2
, then,

q =
π − θ

2θ
or θ =

π

2
.

16

Proof From the definition of Uq shown in Eqn.(48) then Eqn.(55) can take
this form,

(1 − cos (θ))

(

sin2 ((q + 1) θ)

sin2 (θ)
+

sin2 (qθ)

sin2 (θ)

)

= 1,

or,

sin2 ((q + 1) θ) + sin2 (qθ) = 1 + cos (θ) .

Using simple trigonometric identities, the above relation may take the
form,

cos (2qθ + 2θ) + cos (2qθ) + 2 cos (θ) = 0.

Using the addition formulas for cosine we get,

2 cos (2qθ) cos2 (θ) − 2 cos (θ) sin (2qθ) sin (θ) + 2 cos (θ) = 0,

2 cos (θ) (cos (2qθ) cos (θ) − sin (2qθ) sin (θ) − 1) = 0,

cos (θ) (cos (2qθ + θ) − 1) = 0.

From the last equation we get,

cos (θ) = 0 or cos (2qθ + θ) = cos (−π) ,

which gives the required conditions,

θ =
π

2
or q =

π − θ

2θ
.

Using the above result, and since the number of iterations must be integer,
following the same fashion as shown in [4] , then the required number of
iterations is,

q =

⌊

π

2
√

2

√

N

M

⌋

, (56)

where ⌊ ⌋ is the floor operation. The algorithm runs in O
(

√

N/M
)

with

no contradiction with the prove of optimality shown in [4, 13].

17

5 Comparison with Grover’s Algorithm

First we will summarize the above results from both Grover’s and the pro-
posed algorithm before starting the comparison. The probability of success
of Grover’s algorithm as shown in [4] is as follows:

P (qG)
s = sin2 ((2qG + 1) θ) , (57)

where sin2 (θ) = M
N

; 0 < θ ≤ π
2

and the required qG is,

qG =

⌊

π

4

√

N

M

⌋

. (58)

For the proposed algorithm, the probability of success is as follows,

P (q)
s = (1 − cos (θ))

(

sin2 ((q + 1) θ)

sin2 (θ)
+

sin2 (qθ)

sin2 (θ)

)

, (59)

where cos (θ) = 1 − M
N

; 0 < θ ≤ π
2
, and the required q is,

q =

⌊

π

2
√

2

√

N

M

⌋

. (60)

Fig.(7) shows the probability of success as a function of the ratio M/N
for both algorithms, after 2, 3, 4 and 5 iterations. It is clear from the graphs
of the proposed algorithm that the probability will never return to zero once
started and the minimum probability will increase as M increases because of
the use of the partial diffusion operator which will resist the de-amplification
when reaching the turning points as explained in the definition of the partial
diffusion operator, i.e. the problem becomes easier for multiple matches,
where for Grover’s algorithm, the number of cases (points) to be solved with
certainty is equal to the number of cases with zero-probability after arbitrary
number of iterations.

Another way to understand the behaviour of both algorithms is to plot
the probability of success using the calculated number of iterations for each
algorithm, Fig.(8) shows the probability of success as a function of the ratio
M/N for both algorithms by inserting the calculated number of iterations

qG and q shown in Eqn.(58) and Eqn.(60) in P
(q)
s and P

(qG)
s respectively. We

can see from the plot that the minimum probability that Grover’s algorithm
may reach is approx. 17.49 % when M/N = 0.61685 while for the proposed

18

0 0.5 1
0

0.5

1

M/N (q = 2)

P
ro

ba
bi

lit
y

0 0.5 1
0

0.5

1

M/N (q = 3)

P
ro

ba
bi

lit
y

0 0.5 1
0

0.5

1

M/N (q = 4)

P
ro

ba
bi

lit
y

0 0.5 1
0

0.5

1

M/N (q = 5)

P
ro

ba
bi

lit
y

0 0.5 1
0

0.5

1

M/N (q = 2)

P
ro

ba
bi

lit
y

0 0.5 1
0.2

0.4

0.6

0.8

1

M/N (q = 3)

P
ro

ba
bi

lit
y

0 0.5 1
0

0.5

1

M/N (q = 4)

P
ro

ba
bi

lit
y

0 0.5 1
0

0.5

1

M/N (q = 5)

P
ro

ba
bi

lit
y

Figure 7: Probability of success as a function of 0 < M
N

≤ 1 after different
number of iterations: Grover’s algorithm (left) vs. the proposed algorithm
(right).

19

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M/N

P
ro

ba
bi

lit
y

Prop.Alg.
Grovers Alg.

Figure 8: Probability distribution using the appropriate number of iterations
for both algorithms.

0 0.2 0.4 0.6 0.8 1

x 10
−3

0.999

0.9992

0.9994

0.9996

0.9998

1

M/N

P
ro

ba
bi

lit
y

Prop.Alg.
Grovers Alg.

Figure 9: Probability distribution using the appropriate number of iterations
for both algorithms for the hardest cases whereM/N < 1 × 10−3.

20

algorithm, the minimum probability is 84.72% whenM/N = 0.30842. Fig.(9)
shows the same behaviour for both algorithms for small M and large N (hard
cases where M/N < 1× 10−3). It is interesting to notice that the behaviour
for the proposed algorithm shown in Fig.(8) is similar to the behaviour of
the first iteration shown in Fig.(6) for M/N > 0.30842 which implies that if
M/N > 0.30842 then the proposed algorithm runs in O(1), i.e. the problem
is easier for multiple matches.

6 Conclusion

In this paper, we presented a quantum algorithm for searching unstructured

list of size N runs in O
(

√

N/M
)

where M is the number of matches within

the list. The algorithm operations based on the Partial Diffusion Operator
works similar to the Diffusion Operator used in Grover’s algorithm [10] except
that it performs the inversion about the mean only on a subspace of the
system. Using this operator, we showed that the algorithm performs more
reliable than Grover’s algorithm in case of fewer number of matches (hard
cases of the problem) and runs in O(1) in case of multiple matches (easy
cases of the problem).

References

[1] Accardi, L., Sabbadini, R. (2000),A Generalization of Grover’s Algo-
rithm. Los Alamos Physics Preprint Archive, quant-ph/0012143.

[2] Barenco, A., Bennett, C., Cleve, R., Divincenzo, D. P., Margolus, N.,
Shor, P., Sleator, T., Smolin, J., and Weinfurter, H. (1995), Elementary
Gates for Quantum Computation. Physical Review A, 52(5), pp. 3457-
3467.

[3] Bernstein, E. and Vazirani, U. (1993), Quantum Complexity Theory.
In Proceedings of the 25th Annual ACM Symposium on Theory of
Computing, pp. 11-20.

[4] Boyer, M., Brassard, G., Hoyer, P. and Tapp, A. (1996), Tight Bounds
on Quantum Searching. In Proceedings of the 4th Workshop on Physics
and Computation, pp. 36-43.

21

http://arxiv.org/abs/quant-ph/0012143

[5] Brassard, G., Hyer, P., Mosca, M., and Tapp, A. (2002), Quantum Am-
plitude Amplification and Estimation. In Quantum Computation and
Quantum Information: A Millennium Volume, AMS Contemporary
Mathematics Series, Volume 305.

[6] Deutsch, D. (1985), Quantum Theory, the Church-Turing Principle and
the Universal Quantum Computer. In Proceedings of the Royal Society
of London A, 400, pp. 97-117.

[7] Dirac, P. (1947), The Principles of Quantum Mechanics. Clarendon
Press, Oxford, United Kingdom.

[8] Feynman, R.P. (1986), Quantum Mechanical Computers. Foundations
of Physics, 16, pp. 507-531.

[9] Galindo, A., Martin-Delgado, M. A. (2000), A Family of Grover’s
Quantum Searching Algorithms. Los Alamos Physics Preprint Archive,
quant-ph/0009086.

[10] Grover, L. K. (1996), A Fast Quantum Mechanical Algorithm for
Database Search. In Proceedings of the 28th Annual ACM Symposium
on the Theory of Computing (STOC), pp. 212-219.

[11] Jozsa, R. (1999),Searching in Grover’s Algorithm. Los Alamos Physics
Preprint Archive, quant-ph/9901021.

[12] Lloyd, S. (1993), A Potentially Realizable Quantum Computer. Science,
261, pp. 1569-1571.

[13] Nielsen, M. and Chuang, I. (2000), Quantum Computation and Quan-
tum Information. Cambridge University Press, Cambridge, United
Kingdom,Chap.6

[14] Rivlin, T. J. (1990), Chebyshev Polynomials. New York: Wiley.

[15] Simon, D. R. (1994), On the Power of Quantum Computation. In Pro-
ceedings of the 35th Annual Symposium on Foundations of Computer
Science, pp. 116-123.

[16] Schumacher, B. (1995), Quantum Coding. Physical Review A, 51, pp.
2738-2747.

22

http://arxiv.org/abs/quant-ph/0009086
http://arxiv.org/abs/quant-ph/9901021

[17] Shor, P.W. (1997), Polynomial-time Algorithms for Prime Factoriza-
tion and Discrete Logarithms on a Quantum Computer. SIAM Journal
on Computing, 26(5): pp.1484-1509.

[18] Younes, A., Rowe, J. E., Miller, J. F. (2003),A Hybrid Quantum Search
Engine: A Fast Quantum Algorithm for Multiple Matches. Los Alamos
Physics Preprint Archive, quant-ph/0311171.

Appendix A

In this appendix, we will solve the following recurrence relations shown in
Eqn.(42) and Eqn.(43) to get their close forms: First for aq which is defined
as follows for q ≥ 2,

aq = 2yaq−1 − aq−2; q ≥ 2 such that , a0 = s; a1 = s(2y − 1). (61)

The characteristic equation,

λ2 − 2yλ+ 1 = 0, (62)

and,

λ1,2 = y ± i
√

1 − y2. (63)

Let y = cos (θ) such that 0 < θ ≤ π
2
, then,

λ1,2 = cos (θ) ± i sin (θ) = e±iθ. (64)

So, the closed form will take the form,

aq = υ1e
iqθ + υ2e

−iqθ, (65)

where υ1 and υ2 are constants to be determined from the initial conditions
as follows,

υ1 =
s
(

e−iθ − 2y + 1
)

e−iθ − eiθ
; υ2 =

s
(

2y − 1 − eiθ
)

e−iθ − eiθ
. (66)

Substituting in Eqn.(65) we get,

aq =
s

sin (θ)
(2 cos (θ) sin (qθ) − sin ((q − 1) θ) − sin (qθ)) . (67)

23

http://arxiv.org/abs/quant-ph/0311171

We have from the identities of multiple-angle formulas,

sin ((q + 1) θ) = 2 cos (θ) sin (qθ) − sin ((q − 1) θ) . (68)

So the closed form of aq may take the following form,

aq = s

(

sin ((q + 1) θ)

sin (θ)
− sin (qθ)

sin (θ)

)

. (69)

Second, for bq which is defined as follows for q ≥ 2,

bq = 2ybq−1 − bq−2; such that, b0 = s; b1 = 2sy. (70)

Since we are starting with the same recurrence relation used for aq but
with different initial conditions, then the closed form for bq may take the
form,

bq = υ1e
iqθ + υ2e

−iqθ, (71)

where υ1 and υ2 are constants to be determined from the initial conditions
as follows,

υ1 =
se−iθ − 2ys

e−iθ − eiθ
; υ2 =

2ys− seiθ

e−iθ − eiθ
. (72)

Substituting in Eqn.(71) we get,

bq =
s

sin (θ)
(2 cos (θ) sin (qθ) − sin ((q − 1) θ)) . (73)

So the closed form of bq may take the following form,

bq = s

(

sin ((q + 1) θ)

sin (θ)

)

. (74)

Appendix B

In this appendix, we want to prove that, for q ≥ 2, if the amplitudes aq,
bq and cq used in Eqn.(35) are defined according to the definition of Partial
diffusion operator shown in Eqn.(10) as follows,

〈αq〉 = (yaq−1 + (1 − y)cq−1) , (75)

24

aq = 2 〈αq〉 − aq−1; a0 = s, a1 = s (2y − 1) , (76)

bq = 2 〈αq〉 − cq−1; b0 = s, b1 = 2sy, (77)

cq = −bq−1; c0 = 0, c1 = −s, (78)

then their closed forms are as follows, where y = cos (θ) and 0 < θ ≤ π
2
:

aq = s

(

sin ((q + 1) θ)

sin (θ)
− sin (qθ)

sin (θ)

)

, (79)

bq = s

(

sin ((q + 1) θ)

sin (θ)

)

, (80)

cq = −s
(

sin (qθ)

sin (θ)

)

. (81)

Proof Substituting y = cos (θ) in the definition and eliminating cq since it
is sufficient to prove the closed forms for aq and bq we get,

aq = (2 cos (θ) − 1) aq−1 − 2 (1 − cos (θ)) bq−2,

bq = 2 cos (θ) aq−1 − (1 − 2 cos (θ)) bq−2,

with initial conditions,

a0 = s; a1 = s(2 cos (θ) − 1),

b0 = s; b1 = 2s cos (θ) ,

Step 1: Prove for q = 2.
For a2, from definition and initial conditions,

25

a2 = (2 cos (θ) − 1) a1 − 2 (1 − cos (θ)) b0
= (2 cos (θ) − 1) (2 cos (θ) − 1) s− 2 (1 − cos (θ)) s

= s
(

(2 cos (θ) − 1)2 − 2 (1 − cos (θ))
)

= s (4 cos2 (θ) − 2 cos (θ) − 1)
= s

(

3 cos2 (θ) − sin2 (θ) − 2 cos (θ)
)

= s
(

3 cos2(θ) sin(θ)−sin3(θ)−2 cos(θ) sin(θ)
sin(θ)

)

= s
(

sin(3θ)
sin(θ)

− sin(2θ)
sin(θ)

)

.

For b2, from definition and initial conditions,

b2 = 2 cos (θ) (2 cos (θ) − 1) s− (1 − 2 cos (θ)) s
= s (4 cos2 (θ) − 1)
= s

(

3 cos2 (θ) − sin2 (θ)
)

= s
(

3 cos2(θ) sin(θ)−sin3(θ)
sin(θ)

)

= s
(

sin(3θ)
sin(θ)

)

.

Step 2: Assume the relation is true for q = t− 1 and q = t,

at−1 = s

(

sin (tθ)

sin (θ)
− sin ((t− 1) θ)

sin (θ)

)

; at = s

(

sin ((t+ 1) θ)

sin (θ)
− sin (tθ)

sin (θ)

)

.

bt−1 = s

(

sin (tθ)

sin (θ)

)

; bt = s

(

sin ((t+ 1) θ)

sin (θ)

)

.

Step 3: Prove for q = t+ 1,
For at+1, from the definition and assumption,

at+1 = (2 cos (θ) − 1) at − 2 (1 − cos (θ)) bt−1

= (2 cos (θ) − 1) s
(

sin((t+1)θ)
sin(θ)

− sin(tθ)
sin(θ)

)

− 2 (1 − cos (θ)) s
(

sin(tθ)
sin(θ)

)

= s
sin(θ)

(2 cos (θ) sin ((t+ 1) θ) − sin (tθ) − sin ((t+ 1) θ))

= s
(

sin((t+2)θ)
sin(θ)

− sin((t+1)θ)
sin(θ)

)

.

For bt+1, from the definition and assumption,

26

bt+1 = 2 cos (θ) at − (1 − 2 cos (θ)) bt−1

= 2 cos (θ) s
(

sin((t+1)θ)
sin(θ)

− sin(tθ)
sin(θ)

)

− (1 − 2 cos (θ)) s
(

sin(tθ)
sin(θ)

)

= s
sin(θ)

(2 cos (θ) sin ((t+ 1) θ) − sin (tθ))

= s
(

sin((t+2)θ)
sin(θ)

)

.

and this completes the proof.

27

	Introduction
	Quantum Computers
	Quantum Bits
	Quantum Measurements
	Quantum Gates

	Search Problem
	The Algorithm
	Iterating the algorithm once
	Performance after Iterating the Algorithm Once

	Iterating the Algorithm
	Performance of Iterating the Algorithm

	Comparison with Grover's Algorithm
	Conclusion

