
ar
X

iv
:q

ua
nt

-p
h/

03
11

17
1

v1

25
 N

ov
 2

00
3

A Hybrid Quantum Search Engine: A Fast

Quantum Algorithm for Multiple Matches

Ahmed Younes∗ Jon Rowe †

School of Computer Science

University of Birmingham

Julian Miller ‡

Department of Electronics

University of York

September 6, 2006

Abstract

In this paper we will present a quantum algorithm which works

very efficiently in case of multiple matches within the search space

and in the case of few matches, the algorithm performs classically.

This allows us to propose a hybrid quantum search engine that inte-

grates Grover’s algorithm and the proposed algorithm here to have

general performance better that any pure classical or quantum search

algorithm.

1 Introduction

Quantum computers [6, 8, 12] are probabilistic devices, which promise to do
some types of computation more powerfully than classical computers [3, 14].
Many quantum algorithms have been presented recently, for example, Shor
[16] presented a quantum algorithm for factorising a composite integer into
its prime factors in polynomial time. Grover [10] presented an algorithm for
searching unstructured list of N items with quadratic speed-up over algo-
rithms run on classical computers.

∗Birmingham, Edgbaston, B15 2TT, United Kingdom , axy@cs.bham.ac.uk
†Birmingham, Edgbaston, B15 2TT, United Kingdom , jer@cs.bham.ac.uk
‡York, Heslington, YO10 5DD, United Kingdom, jfm@ohm.york.ac.uk

1

Grover’s algorithm inspired many researchers, including this work, to
try to analyze and/or generalize his algorithm [4, 1, 9, 11, 5]. Grover’s
algorithm is proved to be optimal for a single match within the search space,
although the number of iterations required by the algorithm increases; i.e.
the problem becomes harder, as the number of matches exceeds half the
number of items in the search space [13] which is undesired behaviour for a
search algorithm since the problem is expected to be easier. In this paper
we will present a fast quantum algorithm, which can find a match among
multiple matches within the search space after few iterations faster than any
classical or quantum algorithm although for small number of matches the
algorithm behaves classically.

This leads us to proposing a hybrid search engine that includes Grover’s
algorithm and the algorithm proposed here. We also discuss the conditions
that allow both algorithms to be integrate into a single hybrid.

The plan of the paper is as follows: Section 2 gives a short introduction to
quantum computers. Section 3 introduces the search problem and Grover’s
algorithm performance. Sections 4 to 6 introduce the proposed algorithm
with analysis on its performance and behaviour. And we will end up with a
conclusion in section 7.

2 Quantum Computers

2.1 Quantum Bits

In classical computers, a bit is considered as the basic unit for information
processing; a bit can carry one value at a time (either 0 or 1). In quantum
computers, the analogue of the bit is the quantum bit (qubit [15]), which
has two possible states encoded as |0〉 and |1〉; where the notation | 〉 is
called Dirac Notation and is considered as the standard notation of states
in quantum mechanics [7]. For quantum computing purposes, the states |0〉
and |1〉 can be considered as the classical bit values 0 and 1 respectively.
An important difference between a classical bit and a qubit is that the qubit
can exist in a linear superposition of both states (|0〉 and |1〉) at the same
time and this gives the hope that quantum computers can do computation
simultaneously (Quantum Parallelism). If we consider a quantum register
with n qubits all in superposition, then any operation applied on this register
will be applied on the 2n states representing the superposition simultaneously.

2

2.2 Quantum Measurements

To read information from a quantum register (quantum system), we must
apply a measurement on that register which will result in a projection of
the states of the system to a subspace of the state space compatible with the
values being measured. For example, consider a two-qubit system |φ〉 defined
as follows:

|φ〉 = α |00〉 + β |01〉 + γ |10〉 + δ |11〉 , (1)

where α, β, γ, and δ are complex numbers called the amplitudes of the system
and satisfy |α|2 + |β|2 + |γ|2 + |δ|2 = 1. The probability that the first qubit
of |φ〉 to be |0〉 is equal to

(

|α|2 + |β|2
)

. If for some reasons we need to have
the value |0〉 in the first qubit after any measurement, we must try some how
to increase its probability before applying the measurement. Note that, the
new state after applying measurement must be re-normalized so the total
probability is still 1.

2.3 Quantum Gates

In general, quantum algorithms can be understood as follows: Apply a series
of transformations (gates) then apply the measurement to get the desired
result with high probability. According to the laws of quantum mechanics
and to keep the reversibility condition required in quantum computation,
the evolution of the state of the quantum system |ψ〉 of size n by time t is
described by a matrix U of dimension 2n × 2n [13]:

|ψ′〉 = U |ψ〉 , (2)

where U satisfies the unitary condition: U †U = I, where U † denotes the
complex conjugate transpose of U and I is the identity matrix. For example,
the X gate (NOT gate) is a single qubit gate (single input/output) similar
in its effect to the classical NOT gate. It inverts the state |0〉 to the state
|1〉 and visa versa. It’s 2 × 2 unitary matrix takes this form,

X =

[

0 1
1 0

]

, (3)

and its circuit takes the form shown in Fig.(1). Notice that, from now on we
assume that a horizontal line used in a quantum circuit represents a qubit

3

and the flow of the circuit logic is from left to right. For circuits with multiple
qubits, qubits will be arranged according to the notation used in the figure.

X(α |0〉 + β |1〉) (β |0〉 + α |1〉)

Figure 1: NOT gate quantum circuit.

Another important example is the Hadamard gate (H gate) which has
no classical equivalent; it produces a completely random output with equal
probabilities of the output to be |0〉 or |1〉 on any measurements. It’s 2 × 2
unitary matrix takes this form,

H =
1√
2

[

1 1
1 −1

]

, (4)

and its circuit takes the form shown in Fig.(2).

H|x〉 1√
2
(|0〉 + (−1)x |1〉)

Figure 2: Hadamard gate quantum circuit, where x is any Boolean variable.

Controlled operations are considered as the heart of quantum computing
[2], the Controlled-U gate is the general case for any controlled gate with one
or more control qubit(s) as shown in Fig.(3.a). It works as follows: If any of
the control qubits |ci〉’s (1 ≤ i ≤ n − 1) is set to 0, then the quantum gate
U will not be applied on target qubit |t〉; i.e. U is applied on |t〉 if and only
if all |ci〉’s are set to 1. The states of the qubits after applying the gate will
be transformed according to the following rule:

|ci〉 → |ci〉 ; 1 ≤ i ≤ n− 1
|t〉 → |tCU 〉 = U c1c2...cn−1 |t〉 (5)

where c1c2...cn−1 in the exponent of U means the AND-ing of the qubits
c1, c2, ..., cn−1.

4

x

x

x

x

x

x

h

x

xh

...
...

|c1〉|c1〉 |c1〉 |c1〉
|c2〉|c2〉 |c2〉 |c2〉

|tCU〉|t〉 |t〉 |tCN〉
|cn−1〉|cn−1〉 |cn−1〉 |cn−1〉

U

b.Controlled-NOTa.Controlled-U

Figure 3: Controlled gates where the back circle • indicates the control
qubits, and the symbol ⊕ in part (b.) indicates the target qubit.

If U in the general Controlled-U gate is replaced with the X gate men-
tioned above, the resulting gate is called a Controlled-NOT gate (shown in
Fig.(3.b)). It works as follows: It inverts the target qubit if and only if all
the control qubits are set to 1. Thus the qubits of the system c1, c2, ..., cn−1, t
will be transformed according to the following rule:

|ci〉 → |ci〉 ; 1 ≤ i ≤ n− 1
|t〉 → |tCN〉 = |t⊕ c1c2...cn−1〉 (6)

where c1c2 . . . cn−1 is the AND-ing of the qubits c1, c2, . . . , cn−1 and ⊕ is the
classical XOR operation.

3 Search Problem

Consider a list L of N items; L = {0, 1, ..., N − 1}, and consider a function
f which maps the items in L to either 0 or 1 according to some properties
these items shall satisfy; i.e. f : L → {0, 1}. The problem is to find any
i ∈ L such that f(i) = 1 assuming that such i must exist in the list. It was
shown classically that we need approximately N/2 tests to get a result with
probability at least one-half. Let M denotes the number of matches within
the search space such that 1 ≤ M ≤ N and for simplicity and without loss
of generality we can assume that N = 2n. Grover’s algorithm was shown to

solve this problem [4] in O
(

√

N/M
)

. In [13], it was shown that the number

of iterations will increase for M > N/2 which is undesired behaviour for a
search algorithm. To overcome this problem it was proposed in [13] that the
search space can be doubled so the number of matches is always less than
half the search space and then iterate the algorithm π/4

√

2N/M times so

5

...
...

|0〉 H

H|0〉

H|0〉

|0〉

Uf

H

D

Stage2Stage1 Stage3 Stage4

Measure
n

qubits

1 qubit
workspace

Figure 4: Quantum circuit for the proposed algorithm.

the algorithm still runs in O
(

√

N/M
)

. But using this approach will double

the cost of space/time requirement. In the following section we will present
an algorithm that can find a solution for M > N/2 with probability at least
92.6% after applying the algorithm once.

4 The Algorithm

4.1 Iterating the algorithm once

For a list of size N = 2n, the steps of the algorithm can be understood
as follows as shown in Fig.(4):

1- Register Preparation. Prepare a quantum register of n+ 1 qubits all in
state |0〉, where the extra qubit is used as a workspace for evaluating
the oracle Uf :

|W0〉 = |0〉⊗n ⊗ |0〉 . (7)

2- Register Initialization. Apply Hadamard gate on each of the first n
qubits in parallel, so they contain the 2n states, where i is the integer
representation of items in the list:

6

|W1〉 =
(

H⊗n ⊗ I
)

|W0〉 =

(

1√
N

N−1
∑

i=0

|i〉
)

⊗ |0〉 ; N = 2n. (8)

3- Applying Oracle. Apply the oracle Uf to map the items in the list to
either 0 or 1 simultaneously and store the result in the extra workspace
qubit:

|W2〉 = Uf |W1〉 =
1√
N

N−1
∑

i=0

(|i〉 ⊗ |0 ⊕ f(i)〉) =
1√
N

N−1
∑

i=0

(|i〉 ⊗ |f(i)〉).

(9)

4- Completing Superposition and Changing Sign. Apply Hadamard gate
on the workspace qubit. This will extend the superposition for the n+1
qubits with the amplitudes of the desired states with negative sign as
follows:

|W3〉 = (I⊗n ⊗H) |W2〉 = 1√
N

N−1
∑

i=0

(

|i〉 ⊗
(

|0〉+(−1)f(i)|1〉√
2

))

= 1√
P

N−1
∑

i=0

(

|i〉 ⊗
(

|0〉 + (−1)f(i) |1〉
))

; P = 2N = 2n+1.

(10)

LetM be the number of matches, which makes the oracle Uf evaluate to
1 (solutions); such that 1 ≤M ≤ N ; assume that

∑

i

′

indicates a sum
over all i which are desired matches (2M states), and

∑

i

′′

indicates a
sum over all i which are undesired items in the list. So, |W3〉 can be
re-written as follows:

|W3〉 = 1√
P

N−1
∑

i=0

′

(|i〉 ⊗ (|0〉 − |1〉))

+ 1√
P

N−1
∑

i=0

′′

(|i〉 ⊗ (|0〉 + |1〉))

= 1√
P

N−1
∑

i=0

′

(|i〉 ⊗ |0〉) − 1√
P

N−1
∑

i=0

′

(|i〉 ⊗ |1〉)

+ 1√
P

N−1
∑

i=0

′′

(|i〉 ⊗ |0〉) + 1√
P

N−1
∑

i=0

′′

(|i〉 ⊗ |1〉).

(11)

7

From Eqn.(11); we can see that there are M states with amplitude
(−1/√P) where f(i) = 1, and (P − M) states with amplitude (1/√P).
Notice that, applying Hadamard gate on the extra qubit splits the |i〉
states (solution states), to M states (

∑

i

′

(|i〉 ⊗ |0〉)) with positive am-
plitude (1/√P) and M states (

∑

i

′

(|i〉 ⊗ |1〉)) with negative amplitude
(−1/√P).

5- Inversion About the Mean. Apply the Diffusion Operator D similar to
that used in Grover’s algorithm [10] on the n+ 1 qubits. The diagonal
representation of the diffusion operator D can take this form:

D = H⊗n+1 (2 |0〉 〈0| − I)H⊗n+1 = 2 |ψ〉 〈ψ| − I. (12)

where, |ψ〉 = 1√
P

∑P−1
k=0 |k〉 is an equally weighted superposition of

states. The effect of applying D [13] on a general state
∑P−1

k=0 αk |k〉
produces

∑P−1
k=0 [−αk + 2 〈α〉] |k〉, where, 〈α〉 = 1

P

∑P−1
k=0 αk is the mean

of the amplitudes of all states in the superposition; i.e. the amplitudes
αk will be transformed according to the following relation:

αk → [−αk + 2 〈α〉] . (13)

In our case, there are M states with amplitude (−1/√P) and P − M
states with amplitude (1/√P), so the mean 〈α〉 is as follows:

〈α〉 =
1

P

(

M

(−1√
P

)

+ (P −M)

(

1√
P

))

. (14)

So, applying D on the system |W3〉 shown in Eqn.(11) can be under-
stood as follows:

a- The M negative sign amplitudes (solutions): will be transformed
from (−1/√P) to a , where a is calculated as follows: Substitute
αk = −1√

P
and 〈α〉 shown (Eqn.(14)) in Eqn.(13) we get:

a = −
(

−1√
P

)

+ 2
P

(

M
(

−1√
P

)

+ (P −M)
(

1√
P

))

= 1√
P

(

3 − 4M
P

)

.
(15)

8

b- The (P −M) positive sign amplitudes will be transformed from
(1/√P) to b , where b is calculated as follows: Substitute αk = 1√

P

and 〈α〉 shown (Eqn.(14)) in Eqn. (13) we get:

b = −
(

1√
P

)

+ 2
P

(

M
(

−1√
P

)

+ (P −M)
(

1√
P

))

= 1√
P

(

1 − 4M
P

)

.
(16)

We can see that a > b after applying D. The new system |W4〉 can be
written as follows:

D |W3〉 = |W4〉 = b
N−1
∑

i=0

′

(|i〉 ⊗ |0〉) + a
N−1
∑

i=0

′

(|i〉 ⊗ |1〉)

+b
N−1
∑

i=0

′′

(|i〉 ⊗ |0〉) + b
N−1
∑

i=0

′′

(|i〉 ⊗ |1〉).
(17)

such that,

Ma2 + (P −M)b2 = 1. (18)

Notice that, if no matches exist within the superposition (i.e. M = 0),
then all the amplitudes will have positive sign and then applying the
diffusion operator D will not change the amplitudes of the states as

follows: Substituting αk = 1√
P

and 〈α〉 = 1
P

(

P
(

1√
P

))

in Eqn.(13) we

get:

1√
P

+
2

P

(

P

(

1√
P

))

=
1√
P

= αk, (19)

6- Measurement. Measure the first n qubits, we get the desired solution
with probability given below:

i- Probability Ps to find a match out of the M possible matches;
taking into account that a solution |i〉 occurs twice as: (|i〉 ⊗ |0〉)
with amplitude b and (|i〉 ⊗ |1〉) with amplitude a as shown in
Eqn.(17), can be calculated as follows:

9

Ps = M(a2 + b2)

= M
2N

(

10 − 16
(

M
N

)

+ 8
(

M
N

)2
)

= 5
(

M
N

)

− 8
(

M
N

)2
+ 4

(

M
N

)3
.

(20)

ii- Probability Pns to find undesired result out of the states can be
calculated as follows:

Pns = (P − 2M)b2. (21)

Notice that, using Eqn.(18)

Ps + Pns = M(a2 + b2) + (P − 2M)b2

= Ma2 + (P −M)b2 = 1.
(22)

4.1.1 Performance after Iterating the Algorithm Once

n, where N = 2n Max. prob. Min. prob. Avg. prob.
2 1.0 0.8125 0.875
3 1.0 0.507812 0.937500
4 1.0 0.282227 0.968750
5 1.0 0.148560 0.984375
6 1.0 0.076187 0.992187

Table 1: Algorithm performance with different size search space.

Considering Eqn.(15), Eqn.(16), Eqn.(20) and Eqn.(21), we can see that the
probability to find a solution varies according to the number of matches M
in the superposition.

From Table.1, we can see that the maximum probability is always 1.0,
and the minimum probability (worst case) decreases as the size of the list
increases, which is expected for small M because the number of states will
increase and the probability shall distribute over more states while the aver-
age probability increases as the size of the list increases. It implies that the
average performance of the algorithm to find a solution increases as the size
of the list increases.

10

To verify these results, taking into account that the oracle Uf is taken as
a black box, we can define the average probability of success of the algorithm;
average(Ps), as follows:

average(Ps) = 1
2N

N
∑

M=1

NCMPs

= 1
2N

N
∑

M=1

N !
M !(N−M)!

.M (a2 + b2)

= 1
2N+1N3

N
∑

M=1

N !
(M−1)!(N−M)!

(10N2 − 16MN + 8M2)

= 1 − 1
2N
.

(23)

where NCM = N !
M !(N−M)!

is the number of possible cases for M matches.

We can see that as the size of the list increases (N → ∞), average(Ps) shown
in Eqn.(23) tends to 1.

Classically, we can try to find a random guess of the item, which repre-
sents the solution (one trial guess), we may succeed to find a solution with

probability P
(classical)
s = M/N . The average probability can be calculated as

follows:

average(P
(classical)
s) = 1

2N

N
∑

M=1

NCMP
(classical)
s

= 1
2N

N
∑

M=1

N.M
M !(N−M)!N

= 1
2
.

(24)

It means that we have an average probability one-half to find or not to
find a solution by a single random guess even with the increase in the number
of matches.

Similarly, Grover’s algorithm has an average probabilty one-half after
arbitrary number of iterations as we will see. It was shown in [4] that the
probability of success of Grover’s algorithm after q iterations is given by:

PG(q)

s = sin2((2q + 1)θ), where, 0 < θ <
π

2
and sin2(θ) =

M

N
. (25)

The average probability of success of Grover’s algorithm after arbitrary
number of iterations can be calculated as follows (Appendix A):

11

average(PG(q)

s) =
1

2N

N
∑

M=1

NCM sin2((2t+ 1)θ) =
1

2
. (26)

Comparing the performance of the proposed algorithm, first iteration
of Grover’s algorithm and the classical guess technique, Fig.(5) shows the
probability of success of the three algorithms just mentioned as a function of
the ratio (M/N).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M/N

P
ro

ba
bi

lit
y

Prop.Alg.
Grovers Alg.
Classical

Figure 5: A plot of the probability of success of the proposed algorithm Ps,
first iteration of Grover’s algorithm PG(1)

s and the classical guess P
(classical)
s

as a function of the ratio (M/N).

We can see from Fig.(5) that the probability of success of the proposed
quantum algorithm is always above that of the classical guess technique.
Grover’s algorithm solves the case where M = N/4 with certainty and the
proposed algorithm solves the case where M = N/2 with certainty. The
probability of success of Grover’s algorithm will start to go below one-half
for M > N/2 while the probability of success of the proposed algorithm
will stay more reliable with propabilty at least 92.6%. For M < N/8, the

12

h

h

h

...
...

...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

n
qubits

q
qubits

workspace

H

H

H

H

H

Uf Uf Uf

H

D D D Measure

Figure 6: Quantum circuit for the iterative version of the proposed algorithm.

probability of success of the proposed algorithm will start to go below one-
half where performance of Grover’s algorithm will be much better as we will
verify in the next section.

4.2 Iterating the algorithm

If we consider iterating the above algorithm: For a list of size N(= 2n),
prepare n qubits and append extra q qubits for applying q iterations of the
algorithm. The iterating version of the algorithm works as follows (as shown
in Fig.(6)):

1- Initialize the whole n+ q qubits system to the state |0〉.

2- Apply Hadamard gate on each of the first n qubits in parallel.

3- Iterate the following, for iteration k:

a. Apply the oracle Uf taking the first n qubits as control qubits and
the kth qubit workspace as the target qubit exclusively.

b. Apply Hadamard gate on the kth qubit workspace.

c. Apply diffusion operator on the whole n + k qubit system inclu-
sively.

4- Apply measurement on the first n qubits.

13

To understand how the iterative version of the algorithm affects the sys-
tem, we will trace the state of the system during the first few iterations.

Consider the system after the first iteration shown in Eqn.(17), second
iteration will modify the system as follows (to clear ambiguity, a and b used

in the above section will be denoted as a
(1)
0 and b

(1)
0 respectively, where the

superscript index denotes the iteration and the subscript index is used to
distinguish amplitudes):

1- Append second qubit workspace to the system:

∣

∣

∣
W

(2)
1

〉

= b
(1)
0

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) ⊗ |0〉 + a
(1)
0

N−1
∑

i=0

′ (|i〉 ⊗ |1〉) ⊗ |0〉

+b
(1)
0

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) ⊗ |0〉 + b
(1)
0

N−1
∑

i=0

′′ (|i〉 ⊗ |1〉) ⊗ |0〉.
(27)

2- Apply Uf as shown in step 3-a:

∣

∣

∣
W

(2)
2

〉

= b
(1)
0

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) ⊗ |1〉 + a
(1)
0

N−1
∑

i=0

′ (|i〉 ⊗ |1〉) ⊗ |1〉

+b
(1)
0

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) ⊗ |0〉 + b
(1)
0

N−1
∑

i=0

′′ (|i〉 ⊗ |1〉) ⊗ |0〉.
(28)

3- Apply Hadamard gate on second qubit workspace (I⊗n+1 ⊗H):

∣

∣

∣
W

(2)
3

〉

=
b
(1)
0√
2

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) ⊗ |0〉 − b
(1)
0√
2

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) ⊗ |1〉

+
a
(1)
0√
2

N−1
∑

i=0

′ (|i〉 ⊗ |1〉) ⊗ |0〉− a
(1)
0√
2

N−1
∑

i=0

′ (|i〉 ⊗ |1〉) ⊗ |1〉

+
b
(1)
0√
2

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) ⊗ |0〉 +
b
(1)
0√
2

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) ⊗ |1〉

+
b
(1)
0√
2

N−1
∑

i=0

′′ (|i〉 ⊗ |1〉) ⊗ |0〉 +
b
(1)
0√
2

N−1
∑

i=0

′′ (|i〉 ⊗ |1〉) ⊗ |1〉.
(29)

14

4- Apply diffusion operator as shown in step 3-c:

∣

∣

∣
W

(2)
4

〉

= b
(2)
0

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) ⊗ |0〉 + b
(2)
1

N−1
∑

i=0

′ (|i〉 ⊗ |0〉) ⊗ |1〉

+a
(2)
0

N−1
∑

i=0

′ (|i〉 ⊗ |1〉) ⊗ |0〉+ a
(2)
1

N−1
∑

i=0

′ (|i〉 ⊗ |1〉) ⊗ |1〉

+b
(2)
0

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) ⊗ |0〉 + b
(2)
0

N−1
∑

i=0

′′ (|i〉 ⊗ |0〉) ⊗ |1〉

+b
(2)
0

N−1
∑

i=0

′′ (|i〉 ⊗ |1〉) ⊗ |0〉 + b
(2)
0

N−1
∑

i=0

′′ (|i〉 ⊗ |1〉) ⊗ |1〉.
(30)

where the mean of the amplitudes to be used in the diffusion operator
is calculated as follows:

〈α2〉 = 1
2n+2

(

(2n+2 − 4M)
b
(1)
0√
2

)

=
b
(1)
0√
2

(

1 − M
N

)

.

(31)

And the new amplitudes a
(2)
0 , a

(2)
1 ,b

(2)
0 and b

(2)
1 are calculated as follows:

a
(2)
0 = 2 〈α2〉 − a

(1)
0√
2
; a

(2)
1 = 2 〈α2〉 +

a
(1)
0√
2
.

b
(2)
0 = 2 〈α2〉 − b

(1)
0√
2
; b

(2)
1 = 2 〈α2〉 +

b
(1)
0√
2
.

(32)

And the probability of success:

P (2)
s = M

(

(

a
(2)
0

)2

+
(

a
(2)
1

)2

+
(

b
(2)
0

)2

+
(

b
(2)
1

)2
)

. (33)

For the sake of simplicity, we can trace the effect of each iteration on the
amplitudes of the system instead of writing the state of the system explicitly;
for example, the amplitudes of the system after third iteration will be as
follows:

1- The mean of the amplitudes to be used in the diffusion operator:

15

〈α3〉 = 1
2n+3

(

(2n+3 − 8M)
b
(2)
0√
2

)

=
b
(2)
0√
2

(

1 − M
N

)

.

(34)

2- The new amplitudes:

a
(3)
0 = 2 〈α3〉 − a

(2)
0√
2
; a

(3)
1 = 2 〈α3〉 +

a
(2)
0√
2
.

a
(3)
2 = 2 〈α3〉 − a

(2)
1√
2
; a

(3)
3 = 2 〈α3〉 +

a
(2)
1√
2
.

b
(3)
0 = 2 〈α3〉 − b

(2)
0√
2
; b

(3)
1 = 2 〈α3〉 +

b
(2)
0√
2
.

b
(3)
2 = 2 〈α3〉 − b

(2)
1√
2
; b

(3)
3 = 2 〈α3〉 +

b
(2)
1√
2
.

(35)

3- And the probability of success:

P (3)
s = M

(

(

a
(3)
i

)2

+
(

b
(3)
i

)2
)

; i = 0, 1, 2, 3. (36)

In general, after q iterations the recurrence relations representing the itera-
tion can be written as follows:

The initial conditions: a
(0)
0 = b

(0)
0 = 1√

N
.

1- The mean to be used in the diffusion operator:

〈αq〉 =
b
(q−1)
0√

2

(

1 − M

N

)

; q ≥ 1. (37)

2- The new amplitudes of the system:

a
(1)
0 = 2 〈α1〉 +

a
(0)
0√
2
, a

(q)

0→2q−1−1 = 2 〈αq〉 ∓
a

(q−1)

0→2q−2−1√
2

; q ≥ 2. (38)

b
(1)
0 = 2 〈α1〉 −

b
(0)
0√
2
, b

(q)

0→2q−1−1 = 2 〈αq〉 ∓
b
(q−1)
0→2q−2−1√

2
; q ≥ 2. (39)

16

3- The probability of success for q ≥ 1:

P (q)
s = M

(

(

a
(q)
i

)2

+
(

b
(q)
i

)2
)

; i = 0, 1, 2, ..., 2q−1 − 1. (40)

Using mathematical induction, we can prove that the probability of suc-
cess after q iterations shown in Eqn.(40) can take this form (Appendix B):

P (q)
s =

(

M

N
− 1

)(

1 − 2M

N

)2q

+ 1, q ≥ 1. (41)

4.2.1 Performance of Iterating the Algorithm

i- The case where multiple instances of a match exist within the search
space: Consider the following cases using Eqn.(41):

1- The case where M = N/2: the algorithm can find a solution
with certainty after arbitrary number of iterations (one iteration
is enough).

2- The case where M > N/2: the probability of success is; for in-
stances, at least 92.6% after the first iteration, 95.9% after second
iteration and 97.2% after third iteration.

3- For iterating the algorithm once (q = 1) and to get probability at
least one-half, so, M must satisfy the condition M ≥ N/8.

ii- The case where few instances of a match exist within the search space:

First, we need to represent the number of iterations q in terms of the
ratio M/N . From Eqn.(41) and using Taylor’s expansion we get:

q ≥ P
(q)
s − M

N

4M
N

(

1 − M
N

) . (42)

For the cases where q > 1, the following conditions must be satisfied:

n ≥ 4 and 1 ≤M < N/8. (43)

17

It means that first iteration will cover approximately 87.5% of the problem
with probability at least one-half; two iterations will cover approximately 92%
and three iterations will cover 94%. It is easy to prove that the rate of the
increase of the coverage range will decrease as number of iterations increases
as shown in Fig.(7). We can also see from Eqn.(42) and Eqn.(43) that the
algorithm needs O (N/M) iterations for n ≥ 4 and 1 ≤ M < N/8, which is
similar to classical algorithms behaviour. It leads to a conclusion that first
few iterations of the algorithm will do the best performance and there will
be no big gain from continuing to iterate the algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M/N

P
ro

ba
bi

lit
y

Figure 7: A plot of the probability of success of the iterative version of the
proposed algorithm where q = 1,2,. . . ,6.

5 A Hybrid Quantum Search Engine

We have devised a quantum search algorithm, which performs very well in
case of multiple instances of the solution within the search space and a classi-
cal behaviour in case of few instances of the solution. On contrary, Grover’s

algorithm needs O
(

√

N/M
)

to solve the problem but it’s performance de-

creases for M > N/2 [13].

18

This leads up to propose a hybrid quantum search engine, which combines
both algorithms and can be integrated as follows:

i- If the number of solutions M is known in advance:

1- If 1 ≤M < N/8: Use Grover’s algorithm with O
(

√

N/M
)

.

2- If N/8 ≤ M < N : Use the proposed algorithm with O(1) .

ii- If the number of solutions M is unknown:

Iterate the proposed algorithm few times; say three iterations, which
results in a chance of approximately 94% to find a solution. If it
fails, we apply Grover’s algorithm so we still have the same complexity

O
(

√

N/M
)

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M/N

P
ro

ba
bi

lit
y

Prop.Alg.
Grovers Alg.

Figure 8: The probability of success after five iterations from Grover’s algo-
rithm’s vs. the proposed algorithm.

We can see from Fig.(8) that Grover’s algorithm is much faster in the
case of few instances of the solution (ratio M/N is small) and the proposed
algorithm is more stable and reliable in case of multiple instances of the
solution.

19

6 Conclusion

In this paper, we proposed a quantum search algorithm, which performs very
fast in the case of multiple instances of the solution within the search space
(almost constant run-time) but the performance turns out to be classical for
few instances of the solution.

On the other hand we have Grover’s algorithm, which performs very well
in case of few instances of the solution and the performance decrease as
number of solutions increase within the search space.

This gave us the chance to propose a hybrid quantum search engine with
general performance better that any pure classical or quantum search algo-

rithm and still has O
(√

N
)

for the hardest case and approximately O(1) for

M ≥ N/8.

References

[1] Accardi, L., Sabbadini, R. (2000),A Generalization of Grover’s Algo-

rithm. Los Alamos Physics Preprint Archive, quant-ph/0012143.

[2] Barenco, A., Bennett, C., Cleve, R., Divincenzo, D. P., Margolus, N.,
Shor, P., Sleator, T., Smolin, J., and Weinfurter, H. (1995), Elementary

Gates for Quantum Computation. Physical Review A, 52(5), pp. 3457-
3467.

[3] Bernstein, E. and Vazirani, U. (1993), Quantum Complexity Theory.

In Proceedings of the 25th Annual ACM Symposium on Theory of
Computing, pp. 11-20.

[4] Boyer, M., Brassard, G., Hoyer, P. and Tapp, A. (1996), Tight Bounds

on Quantum Searching. In Proceedings of the 4th Workshop on Physics
and Computation, pp. 36-43.

[5] Brassard, G., Hyer, P., Mosca, M., and Tapp, A. (2002), Quantum Am-

plitude Amplification and Estimation. In Quantum Computation and
Quantum Information: A Millennium Volume, AMS Contemporary
Mathematics Series, Volume 305.

20

http://arxiv.org/abs/quant-ph/0012143

[6] Deutsch, D. (1985), Quantum Theory, the Church-Turing Principle and

the Universal Quantum Computer. In Proceedings of the Royal Society
of London A, 400, pp. 97-117.

[7] Dirac, P. (1947), The Principles of Quantum Mechanics. Clarendon
Press, Oxford, United Kingdom.

[8] Feynman, R.P. (1986), Quantum Mechanical Computers. Foundations
of Physics, 16, pp. 507-531.

[9] Galindo, A., Martin-Delgado, M. A. (2000), A Family of Grover’s

Quantum Searching Algorithms. Los Alamos Physics Preprint Archive,
quant-ph/0009086.

[10] Grover, L. K. (1996), A Fast Quantum Mechanical Algorithm for

Database Search. In Proceedings of the 28th Annual ACM Symposium
on the Theory of Computing (STOC), pp. 212-219.

[11] Jozsa, R. (1999),Searching in Grover’s Algorithm. Los Alamos Physics
Preprint Archive, quant-ph/9901021.

[12] Lloyd, S. (1993), A Potentially Realizable Quantum Computer. Science,
261, pp. 1569-1571.

[13] Nielsen, M. and Chuang, I. (2000), Quantum Computation and Quan-

tum Information. Cambridge University Press, Cambridge, United
Kingdom,Chap.6

[14] Simon, D. R. (1994), On the Power of Quantum Computation. In Pro-
ceedings of the 35th Annual Symposium on Foundations of Computer
Science, pp. 116-123.

[15] Schumacher, B. (1995), Quantum Coding. Physical Review A, 51, pp.
2738-2747.

[16] Shor, P.W. (1997), Polynomial-time Algorithms for Prime Factoriza-

tion and Discrete Logarithms on a Quantum Computer. SIAM Journal
on Computing, 26(5): pp.1484-1509.

21

http://arxiv.org/abs/quant-ph/0009086
http://arxiv.org/abs/quant-ph/9901021

Appendix A

To proof the identity shown in Eqn.(26), we first need the next Lemma.

Lemma 6.1 Let α and β angles; 0 < α, β < π/2, such that :

sin2 (α) = cos2 (β) . (44)

Then, if k is any odd positive integer, we have:

sin2 (kα) = cos2 (kβ) . (45)

Proof Since, 0 < α, β < π/2, then we have,

sin (α) = cos (β) . (46)

Also, we can write the following: cos (β) = sin (π/2 − β) = sin (α).
So, α = π/2 − β.

Therefore;

cos (kβ) = cos
(

k
(

π
2
− α

))

= cos
(

kπ
2
− kα

)

= cos
(

kπ
2

)

cos (kα) + sin
(

kπ
2

)

sin (kα)
= ± sin (kβ) .

(47)

Then, cos2 (kβ) = sin2 (kβ) .

Theorem 6.2 For any odd positive integer k and an angle θM ; 0 < θM < π
2
,

defined as follows:

sin2 (θM) =
M

N
. (48)

Then,
N
∑

M=1

NCM sin2 (kθM) = 2n−1. (49)

Proof Consider

sin2 (θM) + sin2 (θN−M) =
M

N
+
N −M

N
= 1. (50)

22

So,
sin2 (θM) = 1 − sin2 (θN−M)

= cos2 (θN−M) .
(51)

By Lemma,

sin2 (kθM) = cos2 (kθN−M) . (52)

Or,

sin2 (kθM) + sin2 (kθN−M) = 1. (53)

Now consider,

2
N
∑

M=1

NCM sin2 (kθM) =
N
∑

M=1

NCM sin2 (kθM) +
N
∑

M=1

NCN−M sin2 (kθM)

=
N
∑

M=1

NCM sin2 (kθM) +
N
∑

M=0

NCM sin2 (kθN−M)

=
N
∑

M=1

NCM

(

sin2 (kθM) + sin2 (kθN−M)
)

=
N
∑

M=1

NCM

= 2n.
(54)

23

Appendix B

To prove that the probability of success after q iterations is as shown in
Eqn.(41), we need first to prove the following relation:

Let b
(0)
0 = 1√

2n
= 1√

N
, and given by the definition of the diffusion operator

for q ≥ 1 that,

〈αq〉 =
b
(q−1)
0√

2

(

1 − M

N

)

(55)

And,

b
(q)
0 = 2 〈αq〉 −

b
(q−1)
0√

2
(56)

Then,

b
(q)
0 =

b
(0)
0

(√
2
)q

(

1 − 2
M

N

)q

(57)

Proof (By Mathematical Induction)

Step 1: For q = 1, it follows directly from Eqn.(16) as follows:

b
(1)
0 = 1√

2n+1

(

1 − 2M
N

)

=
b
(0)
0√
2

(

1 − 2M
N

)
(58)

Step 2: Assume the relation is true for q = t:

b
(t)
0 =

b
(0)
0

(√
2
)t

(

1 − 2
M

N

)t

(59)

Step 3: Prove for q = t+ 1:

By definition,

〈αt+1〉 =
b
(t)
0√
2

(

1 − M

N

)

(60)

24

And,

b
(t+1)
0 = 2 〈αt+1〉 − b

(t)
0√
2

=
2b

(t)
0√
2

(

1 − M
N

)

− b
(t)
0√
2

=
b
(t)
0√
2

(

1 − 2M
N

)

(61)

Substitute by the assumption, it directly gives the term for q = t+ 1,

b
(t+1)
0 =

b
(0)
0

(√
2
)t+1

(

1 − 2
M

N

)t+1

(62)

Now, to prove that the probability of success of the proposed algorithm
after q iterations can take this form:

P (q)
s =

(

M

N
− 1

)(

1 − 2M

N

)2q

+ 1. (63)

Given by definition that,

P (q)
s = M

(

(

a
(q)
i

)2

+
(

b
(q)
i

)2
)

; i = 0, 1, 2, ..., 2q−1 − 1. (64)

Proof (By Mathematical Induction)

Step 1: For q = 1, it is straight forward from Eqn.(24).

Step 2: Assume the relation is true for q = t,

P
(t)
s = M

(

(

a
(t)
i

)2

+
(

b
(t)
i

)2
)

; i = 0, 1, ..., 2t−1 − 1.

=
(

M
N

− 1
) (

1 − 2M
N

)2t
+ 1

. (65)

Step 3: Proof for q = t+ 1,

By definition,

25

P
(t+1)
s = M

(

(

a
(t+1)
0→2t−1

)2

+
(

b
(t+1)
0→2t−1

)2
)

= M

(

2t+2 〈αt+1〉2 +
(

a
(t+1)
0→2t−1−1

)2

+ 2t+2 〈αt+1〉2 +
(

b
(t+1)
0→2t−1−1

)2
)

= M2t+3 〈αt+1〉2 + P
(t)
s

(66)

Using Eqn.(57), we have,

〈αt+1〉2 =

(

b
(t)
0√
2

(

1 − M
N

)

)2

=

(

b
(0)
0

(
√

2)
t+1

)2
(

1 − M
N

)2 (
1 − 2M

N

)2t

= 1
N2t+1

(

1 − M
N

)2 (
1 − 2M

N

)2t

(67)

Substitute in Eqn.(66), we get,

P
(t+1)
s = M2t+3 1

N2t+1

(

1 − M
N

)2 (
1 − 2M

N

)2t
+
(

M
N

− 1
) (

1 − 2M
N

)2t
+ 1

=
(

M
N

− 1
) (

1 − 2M
N

)2t (4M
N

(

M
N

− 1
)

+ 1
)

+ 1

=
(

M
N

− 1
) (

1 − 2M
N

)2(t+1)
+ 1

(68)

26

	Introduction
	Quantum Computers
	Quantum Bits
	Quantum Measurements
	Quantum Gates

	Search Problem
	The Algorithm
	Iterating the algorithm once
	Performance after Iterating the Algorithm Once

	Iterating the algorithm
	Performance of Iterating the Algorithm

	A Hybrid Quantum Search Engine
	Conclusion

