
Automated synthesis of digital multiplexer networks

A.E.A. Almaini, PhD, FlEE
J.F. Miller, PhD
L. Xu, BSc

Indexing terms: Combinationul logic, Multiplexers, Universal logic modules, Cascade and tree networks

Abstract: A programmed algorithm is presented
for the synthesis and optimisation of networks
implemented with multiplexer universal logic
modules. The algorithm attempts level by level
optimisation selecting the control variables that
result in minimum number of continuing
branches. Cascaded networks, if realisable, are
always found and given preference over tree net-
works, though mixtures of cascade and tree con-
figurations are permitted. The algorithm is
programmed in Fortran and tested for single and
double control variable modules. In theory, the
program can be used for any number of variables
for completely and incompletely specified func-
tions.

1 Introduction

The use of multiplexers as universal logic modules
(ULMs) for the realisation of logic functions has
attracted a great deal of attention during the last two
decades following publications by Yau and Tang [l , 23.
Most of the effort was in finding minimal realisations for
logic functions. This included linear programming and
numerical methods [3], maximisation of the number of
ones and zeros connected to the input [4], control vari-
able selection with view to minimise the number of
branches in ULM trees [SI, as well as the use of decom-
position and reduced dependence methods [6,7].

A graphical method for cascade implementations
based on Karnaugh maps was introduced by Tosser et al.
[8]. The map method, however, limits the maximum
number of variables that can be considered to six. An
iterative method for cascade realisations using single
control multiplexers was presented by Gorai et al. [9].
The method terminates if the function is not cascade rea-
lisable. This paper introduces a programmed algorithm
which implements any logic function using minimal trees.
A cascade connection, if possible, is considered a special
form of a tree with a single input continuing into multi-
level network. M(c) is used to indicate a multiplexer
ULM module with c control variable(s). This device has a
single output and 2' inputs. Any logic function can be
implemented using ULMs connected as a tree with the
first level (output stage) having a single ULM, the second
level having a maximum of 2' ULMs and so on. At any
level, the logic function is expanded about the control

Paper 88478 (C3). first received 14th May 1991 and in revised form 21st
February 1992
The authors are with the Department of Electrical, Electronic & Com-
puter Engineering Napier University, 219 Colinton Road, Edinburgh
EH14 IDJ, United Kingdom

IEE PROCEEDINGS-E, Vol. 139, No. 4, JULY 1992

variables used at that level using Shannon's expansion
theorem [5]. The inputs may be connected to a constant
(0 or l), a variable ki , or a subfunction requiring further
expansions and ULM levels. ii is used to denote any
variable xi which can be true (xi) or complemented (Xi).

The algorithm works for any number of control vari-
ables though the program is only tested for c = 1 and
c = 2, the most common cases. Because c is specified at
each level, different size modules may be used at different
levels if desired. The program automatically finds cascade
connections, if available, as this reduces the number of
continued branches. For tree type realisations, the algo-
rithm permits mixed control variables within each level if
this results in more branches being terminated with a
constant or a single variable. The program can be used
for any number of variables and can handle both com-
pletely and incompletely specified functions. The search
for the best choice of control variables is exhaustive at
the first level. At each subsequent level, an exhaustive
search is carried out for the best choice of control vari-
ables amongst the remaining variables. The number of
computations, however, decreases as the final level is
approached. This approach was found to give reduced
computation time though it does not guarantee global
optimality in all cases.

2 Theory

Any n variable logic function f (xl, ..., x,) can be ex-
panded with respect to any n - 1 variables as follows

1 xy, ..., xb: ; f (i l , .. ., in - ' , x.)
2 a - 1 - 1

f (x l , .. ., x,) =
i = O

where the superscripts i , , . . . , i n _ form the binary repre-
sentation of i

x; = i j

x; = x j

j = 1, ..., n - 1

The residue functionf(i,, . . . , in- ', x,) is a function of one
variable x, which can assume any of the values x,, gm, 0
or 1.

Such a function can be realised using a single multi-
plexer with n - 1 control inputs and ?-' data inputs
P I .

If smaller multiplexer modules are used, a tree struc-
ture using l levels can be constructed to realise the func-
tion where I,,, = [(n - l)/c].

The tree may require up to (I' - l)/(I - 1) modules where

By suitable selection of the control variables used at
each level, the number of modules may be minimised,
though the exchange of control variables for the same

[g] = smallest integer greater than or equal to g.

I = 2' [SJ.

329

Authorized licensed use limited to: Julian Miller. Downloaded on October 19, 2008 at 07:16 from IEEE Xplore. Restrictions apply.

module will only permute the connections to that module
and does not result in any saving.

- 1 of the inputs terminate with a variable ii or a
logical constant and only one input continues into the
next level, a cascade is generated where a single module is
used in each level.

In practice, however, functions that can be imple-
mented with a simple cascade, or require a complete tree
are rare. More often, functions lie somewhere in between
where some inputs may not be connected to other
modules while other inputs connect to modules in the
next level and therefore form an incomplete tree as will
be illustrated in the examples in Section 3.

It is the aim, therefore, to identify control variables
that eliminate as many branches as possible, and reduce
the number of levels and modules required without
having to resort to completely exhaustive search.

Theorem 2.1: For an n variable function realised by
multiplexer tree; if a c control module at level l has an
input

there are no entries in the minterm table corresponding
to this input, or

then there are 2'"' entries.

If

(4 0

(ii) 1

Proof:
(i) If a module has a 0 data input, this input cannot be

selected, thus there are no entries in the minterm table
corresponding to the control selection.

(ii) If an input is 1, all unselected variable can take any
value. There are n - cl variables unselected (those not
required to select the 1 input) therefore there must be
2"-" minterm entries.

Theorem 2.2: For an n variable function realised by
ULM tree, if a c control module at level 1 has input i j
(wherej is not a control used in the I - 1 levels preceding
the module in question) there are 2"-c'-1 entries in the
minterm table (with .tj fixed either as x j or ij).

Proof: To select the input in question, IC variables are
required as controls. Thus if i j is input there must be
n-(lc + 1) variables unspecified. These can have any value.
Thus there must be 2"-+' entries in the minterm table.
Note i j is fixed so all entries must correspond to either . - . x . = x . or x . = x .

J J J I '

Lemma 2.1: Connected ULMs from different levels of a
network cannot share a common control variable [SI.

Theorem 2.3: A M(c) multiplexer can realise any c + 1
variable function [lo].

These theorems are utilised in Steps 3 and 4 of the
minimisation algorithm in the following Section.

3 Algorithm

Step I : Get the minterms of the given function. Set the
level I = 1. Calculate the number of variables n.
Step 2 : Get the number of control variables per module c
and check whether the number of variables prior to level
1, n - c(l - 1) < c + 1. If so, the tree can finish with any
choice of remaining variables. If not, continue.

330

Step 3: Check if there is any c-tuple of variables { x i , :
r = 1, ..., c } for which the number of simultaneous
occurences in the minterm table

S c (i i l , . . . , iJ = 0 or
S&, . . . , ik) = 2"-ci

(34
(3b)

If either of eqn. 3a or eqn. 3b is true, increment the saved
branch counter yc(xi l , . . . , xq) . Keep a record of the input
Ic(iil, . . . , iL) = 0 or 1 respectively.
Step 4: Check if there is any c + 1 tuple of variables
which satisfy

If so, check that there is some variable x i k , say, which, for
all simultaneous occurrences, has the same value

Se+l (i i l , ..., i.4+1) = 2n-ci-1. (44

(44
-

S ~ + l (i i l , . . . , i i k , . . . , i ~ + ~) = o

yc(xil, ..., Xit-1, ~ i k + l , ..., xi ,+i)

If so, increment the branch saved counter

Keep a record of the input
. .

I c (i i 1 , ..., X i k - 1 , xi&+,, ..., i i c + l) = i i k

Step 5 : According to the results of Steps 3 and 4, calcu-
late which c tuple of variables (to be chosen as controls
to module) x h l , . . . , xh, maximises the number of saved
branches

x (X h l , . . . , x k) = max (ye (x i l r . . . , x4) }
Step 6 : According to the choice of Step 5, there are
2' - x inputs to the module in question whose input is
neither a constant nor a single variable.

Obtain the reduced subfunctions for the inputs separa-
tely and derive their minterm tables. If any subfunctions
are identical, inputs can be connected together and
further branches saved. Increment the level I:= l + 1. For
each unique subfunction, go to Step 2 and repeat the pro-
cedure.

Example I : Implement the following function using M(2)

28, 29, 30, 32, 33, 34, 35, 38, 39,42,43,46,47,48,
49, 50, 51, 54, 55, 58, 59,62,63)

f = c (4 , 5,6, 7, 8, 10, 11, 12, 14, 15, 20, 21,22, 23, 27,

Step I : n = 6 , l = 1
Step 2: c = 2, n - c(1- 1) = 6 > c + 1 = 3. The minterm
table is given in Table 1.

Steps 3 and 4 are carried out for all possible control
pairs x i , x j , i # j and, for each pair, determine how many
inputs have either variables coming in or fixed inputs 0
or 1. For level 1 = 1, 2"-" = Z4 = 16,2"-"-: = 8. Thus it
is necessary to find simultaneous pairs S, (x i , ij) = 0, 16
and simultaneous triples S3(iir ij, i,) = 8. The latter
being subject to eqn. 4b.

Control pair x l x z
Sz(il , X2) = 10. This branch cannot be saved.
S2(Xl, x 2) = 8. Eqn. 4a is potentially satisfied
but
S3(il, x 2 , x j) # 8. Vj (j # 1, 2). This branch cannot be
saved.
S2(x l , X2) = 10. This branch cannot be saved.
S 2 (x l , x 2) = 10. This branch cannot be saved.
No branches can be saved at the first level, if x 1 and x 2
are chosen.

Control pair x l , x 3
S,(Xl, X3) = 8. Eqn. 4a is potentially satisfied.

IEE PROCEEDINGS-E, Vol. 139, No. 4, JULY 1992

Authorized licensed use limited to: Julian Miller. Downloaded on October 19, 2008 at 07:16 from IEEE Xplore. Restrictions apply.

Table 1 : Mintarms for Example 1 Increment the level 1 = 2. 2"-" = 4, T-''-' = 2. Go to
Step 2. n - c(1- 1) = 4 > c + 1 = 3.
For inDut I , x 2 (Table 2) carry out Steps 3,4 and 5. x 2 x3 x4 x g x 6

0 0 0 1 0 0
0 0 0 1 0 1
0 0 0 1 1 0
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 0 1 1
0 0 1 1 0 0
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 0 1 1
1 0 0 1 1 0
1 0 0 1 1 1
1 0 1 0 1 0
1 0 1 0 1 1
1 0 1 1 1
1 0 1 1 1
1 1 0 0 0
1 1 0 0 0
7 1 0 0 1
1 1 0 0 1
1 1 0 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 0 1
1 1 1 1 1
1 1 1 1 1

0
1
0
1
0
1
0
1
0
1
0
1

- ~ - .
Control pair x2, xs
S2(Z2, Is) = 2. Eqn. 4a is satisfied as S3(12, Is, Z6) = 2.
Eqn. 46 is satisfied.

S&, xs) = 4. Eqn. 3b is satisfied. I,&, x5) = 1, y2(x2,
12(% 1 25) = 26, yZ(x2 7 XS) = 1.

xs) = 2

Tabla 2: Reduced minterm table for input i,x,

x2 x4 x 5 X 6

0 0 0 0
0 0 1 0
0 0 1 1
0 1 0 0
0 1 1 0
0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0

Sz(x2 , is) = 2. Eqn. 4a is satisfied as S,(x, , Z5, x4) = 2.
Eqn. 46 is satisfied.

S2(x2, xs) = 2. S,(x,, x5, ij) # 2, j = 4 or 6. Eqn. 4a is
not satisified. Thus control pair x2, x s saves three
branches.

On considering all other pairs of controls, it is found
that no pair saves more than three branches, hence x2
and xs are the chosen pair.

For input x,X, it is found that, for control pair x2 x4,
all inputs are terminating so xz x4 are the chosen controls
and no more tests are needed.

12(x2, 2 5) = x47 YZ(X2 7 xs) = 3.

Step 6 : There is only one reduced subfunction, corre-
sponding to input Xlx, x2 xs as given in Table 3.

Tabla 3: Reduced minterm tabla for input i,x,x,x,
S3(X,, X,, x4) = 8, and S,(X,, I,, f4) = 0. This branch
can be saved.
12(il, I,) = x4.
YZ(XI9 x3) = 1; - For the next inputs 0 1

x 4 x 6

Sz(I,, x3) = 10. Sz(x,, 13) = 12. These branches cannot
be saved.
S2(xlr x,) = 8. Eqn. 4a is potentially satisfied.
S3(x1, x,, x5) = 8, and S,(x,, x3, 15) = 0. Another
branch is saved.
Iz(X1, x3) = x5 '
YAXl, x3) = 2.
Carrying out the tests in Steps 3 and 4 for all control
pairs causes the conclusion that the most saved branches
for any pair is two. Choose x1 and x, as the initial
control variables (Step 5). We depict the initial module in
Fig. 1.

Step 6 : Obtain the reduced subfunctions for the non-
terminating inputs Z,x, and x l i , .

to next level

X 1 x 3

Fig. 1

IEE PROCEEDINGS-E, Vol. 139, No. 4 , JULY 1992

First stage realisation of example I

Increment the level I = 3. Go to step 2.
n - c(l - 1) = 2 < c + 1 = 3. Choose any pair of control
variables. Choose x4 x6. Thus the complete tree is given
in Fig. 2.

ModiJication for incompletely speciJied functions
In this Section a dash indicates quantities determined
from the minterm table of incompletely specified terms.

x 2 XL

Fig. 2 Complete implementation of example I

331

Authorized licensed use limited to: Julian Miller. Downloaded on October 19, 2008 at 07:16 from IEEE Xplore. Restrictions apply.

Step 3': If neither eqn. 3a nor eqn. 36 are true, check
whether

(3)' SC(XiI, ..., i,) + S&, ..., i,) = 2"-l

If so, Ic(iil, ..., iic) = 1. Increment the saved branch
counter

YAXii. . . ., xi)

S c + l (i i , , ...) &+,) < 2"-"-'

sc+l(%l> . . ., Xik, . . . , i i < + I) = 0
SC+l(ii l , ..., i i k , ..., i i < + J

Step 4': If eqn. 4a is not satisfied and

Check whether there is a variable xik which satisfies
(h)'

(44'

+ S:+l(iil, ..., iik, ..., i&+,)

(4 4
- - 2n-rl-1

If so, input

Increment the branch saved counter

. .
Ic(ii1, ..., xik-,, x ikt l , ..., i i c + l) = i i k

YAXi1, ...) xik-1, xiktl, ..., xi ,+,)

Example 2: Implement the following incompletely speci-
fied function using M(2).

f = c(1, 2, 3, 4, 5, 6, 8, 16, 17, 18, 21, 22, 29, 31)
+ c(7, 10, 12, 13, 19, 24, 25, 26, 27)

d

Step 1 : n = 5 , l = 1
Step 2: c = 2, n - c(l - 1) = 5 > c + I. The minterm
table is given in Table 4.

Table 4: Minterm table for example 2 including don't care
conditions

x1 x2 x3 x4 x5

0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 1 0 1
1 1 1 1 1

d , O 0 1 1 1
d - 0 1 0 1 0
d ; O 1 1 0 0
d , O 1 1 0 1
d . 1 0 0 1 1
~ 1 1 0 0 0
d , 1 1 0 0 1
d , 1 1 0 1 0
d . 1 1 0 1 1

Steps 3' and 4 : One exhaustively searches all pairs of
variables x i , x j i # j and for each pair determine how
many inputs have either variables coming in or fixed
inputs 0 or 1. To do this, apply the tests described in
Steps 3' and 4 . For the first level 2"-" = 8 and

= 4. Thus one is looking for simultaneous pairs 2"-cl-1
S2(i ir ij) = 0 or S2(iir ij) + Yz(ii, ij) = 8 and simulta-
neous triples S 3 (i i , i j , 2,) + F3(ii, i j , i,) = 4.

332

Control pair x l , x 2
S,(X,, 2,) = 6, S;(X,, X,) = 1 (d ,) . Eqn. 3' and eqn. 4a' are
not satisfied.
S2(Xlr x,) = 1, S,(X,, x,) = 3 (d 2 , d 3 , d4). However eqn.
4c' cannot be satisfied for any triple.
Sz(x l , X2) = 5, S; (x l , X,) = 1 (d5). Eqn. 3' and eqn. 4a' are
not satisfied.
Sz(x l , x 2) = 2, S z (x l , x,) = 4 (d 6 , d , , d , , d9). Eqn. 3' is
not satisfied.

It is found that S3(x l , x , , X5) = 0 and S3(x1. x 2 , x 5)
+ S;(x, , x , , x 5) = 4. Eqn. 4b' and eqn. 4c' are satisified

provided we choose d , and d,. Thus Ic(xl, x,) = x 5 .
Increment the saved branch counter y2(x1 , x ,) = 1. Now
select another control pair.

Control pair x,, x 3
S,(X,, X3) = 4, S;(Xl, X3) = 1 (d,) . Eqn. 3' is not satisfied.
Eqn. 4c' is potentially satisfied. However, examination of
the minterm table shows S3(X1, X 3 , ij) # 4 Vj, j # 1, 3. So
this input cannot be saved. S,(X,, x3) = 3, fz(Xl, x3).= 3
(d , , d , , d4). Eqn. 3' is not satisfied. Eqn. 4c' is potentially
satisfied. Choosing don't care d,, we find S3(X,, x 3 , x ,) =
0 and S3(Xl, x 3 , 2,) + S;(X,, x 3 , i2) = 4 so that 12(Xlr
x 3) = X, and y2(x1 , x 3) = 1.
S z (x l , X3) = 3, S'(x,, X3) = 5 (d5 - d9). Potentially eqn. 3'
or eqn. 4c' are satisfied, as S2(x1 , 5,) + S; (x l , 23) = 8
giving l z (x l , i3) = 1.
S3(x1 , X 3 , x ,) = 0 and S3(x , , X 3 , X,) + S;(x, , X3, Xz) = 4
(d5) giving I z (x l , X,) = X, .
Thus again an input can be saved, y,(x, , x 3) = 2 and
there is a choice of input. Considering the last input, it is
found that S 2 (x l , x 3) = 2.
S 2 (x l , x 3) = 0. Neither eqn. 3' or eqn. 4 can be satisfied.
Continuing to work through all possible control pairs, it
is found that control choice x , and x 5 also saves two
branches, all other control choices save less than two
branches.
Step 5 : Control variables x1 and x , are chosen for the
first level. The first module is shown in Fig. 3.

m to next level

1 or X2
* z -1 tf

to next level --1 I I
X 1 x 3

Fig. 3 First stage implementation ofexample 2

S t e p 6 : On obtaining the reduced subfunction for the
nonterminating inputs X,X3 and x l x 3 , it is found that the
reduced subfunctions are nonidentical, so no further
branches can be saved.

Increment the level, 1 = 2. For each subfunction we go
to Step 2. It is found that n - c(1- 1) = 3 = c + 1, hence
the tree network can finish with control choices x , , x 4 .
The complete tree realisation is seen in Fig. 4.

4 Cascade realisable functions
The algorithm performs exhaustive search at the first
level (stage). The control variables resulting in the most
non-continuing branches (branches terminating with ii, 0
or 1) are selected. No further levels are required if all the
inputs terminate. If choice is possible, then any can be
selected with the knowledge that the cascade solution, if

I E E PROCEEDINGS-€, Vol. 139, No. 4, J U L Y 1992

Authorized licensed use limited to: Julian Miller. Downloaded on October 19, 2008 at 07:16 from IEEE Xplore. Restrictions apply.

any, will always be found. That this statement is true can
be seen from Theorem 4.1. To illustrate this situation
consider the following example.

I 1
x2 x4

Fig. 4 Complete implementation of example 2

Example 3

f = c(0, 1,4, 9, 13, 16, 17, 18, 19, 20,21, 22, 23, 24, 25,
26, 21, 28, 29, 30, 31, 34, 35, 38, 39, 42,43, 46,47,
48,49, 52, 53, 56, 57, 60,61)

The computer program gives the solution in Fig. 5.

0 q - p ~ ~ ~ ~ f 1 x5

' 4 ' 6 y3 K5 "1 x2

Fig. 5 Cascade implementation ofexample 3

In fact, x l x 2 is not the only choice to make the first
level cascade realisable. x l x s and x 2 x5 are other choices.
Because the program will keep the first one it has found,
the question arises as to whether it can happen that some
choices may give cascade networks and others do not.

The Karnaugh map of Example 3 (Fig. 6) is given to
illustrate that, if there is choice of cascade realisability at
a certain level, the algorithm could find the cascade
network at the next level if it exists irrespective of the
control pair choice.

\

X 1 '

Fig. 6

IEE PROCEEDINGS-E, Vol. 139, No. 4, J U L Y 1992

Split K-map oJexample 3

Fig. 6 shows the K-map being split with respect to
x 1 x 2 or x 1 x 5 . For pair x 1 x 2 , all parts except XIX2 are
typical loops [8] which guarantees that their inputs are
connected to constants or single variable rather than
other modules. For pair x l x s , the X,Xs part is the only
region not containing a typical loop. Under the condition
that both choices are cascade realisable at the first level,
all parts except where X1X2 and XlfS intersect must be.
typical loops. The subfunction of the next level is defined
by the minterms in the regions XIX, or f , X 5 depending
on which choice has been made. However, in either case,
the minterms which are included in the overlapping area
of flX2 and X l f s determine whether the remaining suh-
function is cascade realisable at the next level. The above
argument is now generalised with the aid of Theorem 4.1.

Theorem 4.1; Let f be an M(c) (c = 1, 2) cascade realis-
able function at level 1 with controls x,(c = 1) or x, , x ,
(c = 2) and at level 1 + 1 with controls x,{c = 1) or x j ,
xk(c = 2). In addition, let f be level 1 cascade realisable
with different controls x, (c = 1) or x, , x , (c = 2) then
controls can always be found for whichfr+l is cascade rea-
lisable.

Proof: Consider the case of two control variables (c = 2).
This is depicted in Fig. 7a

(la) f i = X,X,f r+l + alX,x, + a z x . i , + a 3 x , x ,

f i + l = X j X k f r + 2 + b1Xjxk + b2xjXk + b3XjXk (l b)
fit2 = fr+2(xi) i f n, m , j , k (1 4

From the theorem conditions fr is also given by (see Fig.

(14
7b)

f - - - , - x,x , f ; + l + clX,x, + c2x,X, + c j x , x ,

'k x n xm
a

xr xs
b

xr

Alternative cascade realisations oJlogicfunction

d

Fig. 7

333

Authorized licensed use limited to: Julian Miller. Downloaded on October 19, 2008 at 07:16 from IEEE Xplore. Restrictions apply.

Equating eqn. l a and eqn. Id and multiplying (AND
operation) by X, Zs we find

fi = X,X, f;+, + C I X , X . + c 2 x , X , + c 3 x , x , (2 4
f ; + , =I,?, f ; + 2 + u l X n x , + u 2 x , X , + a 3 x , x , (2 4

f ; + 3 = f ; + 3 (~ i) = f i + 2 (x i) i f r , s, n, m,j . k (26)
f ; + 2 = X j x , f ; + 3 + blx jxk + b2xj.tk + b , x j x , (2 ~)

If any bi or ai involve x, or x , because of multiplication
by X,X, in eqn. 2a these terms will vanish. While, if X, or
X, is involved, the inputs become 1.

If x, = x , a control is shared. In this case eqn. 2b
becomes

f;+, = X m f ; + 2 + a , x , (3)
If, in addition, x , is chosen to equal x j then eqn. 3, eqn.
2b and eqn. 2c can be written as follows

f ; + l = x j % k f ; + 2 + b1xjXk + alx jgk + alXjXk (4 4

f ; + 2 = f ; + 3 (4 4
Thus it can be seen that f;, I is cascade realisable with
controls j, k. If x j = x , , eqn. 2a and eqn. 2b are
unchanged so again the theorem is true. If x, = x, and
xk = x,, eqn. 2a is unchanged and eqn. 2b becomes eqn. 3
while eqn. 2c becomes

f ; + 2 = X j f ; + 3 + b z x j (5)
Eqn. 3 and eqn. 5 combine to give

f;+, = Z m X j f ; + 2 + b 2 X , x j + u,x ,Xj + a l x , x j

For a single control (c = 1) eqns. la-d become (see

fr = X . f r + l + a l x , (6 4
f i + l =Xjh+2 + blx j (66)

=fiC2(xi) i z n , j (6 4

fi = w ; + 1 + c1x. (64

Hence here toof;, , is cascade realisable.

Figs. 7c and 7d

As before, equating eqn. 6a and eqn. 6d and multiplying
by f,

It is clear from the above equations thatf;,, is cascade
realisable for any value of r (including j). Hence the
Theorem is proved.

5 Conclusion

A programmed algorithm for the synthesis of optimised
multiplexer networks is presented. Level by level opti-
misation techniques were employed and found to give
optimal results in all examples attempted. Multilevel
optimisation techniques may further improve the results,
but would significantly increase the complexity of the
procedure and hence increase the computation time. The
algorithm can handle any number of variables for com-
pletely and incompletely specified logic functions.
Redundant variables, if any, are automatically eliminated.
The program was written in Fortran-77 and run on a
DEC micro VAX 11. Computation time was found to
increase with the number of variables, number of min-
terms and number of control variables. All the examples
given in this paper took less than 8 seconds of CPU time.
A larger example of 20 variables and 200 minterms
requiring 521 M (2) modules, took about 30 minutes of
CPU time. For functions much larger than 20 variables,
heuristic based algorithms may be desirable. The
program listing can be obtained from one of the authors.

6 References

1 YAU, S.S., and TANG, C.K.: ‘Universal logic circuits and their
modular realisation’, AFIPS Conf Proc., 1968,32, pp. 297-305

2 YAU, S.S., and TANG, C.K.: ‘Universal logic modules and their
applications’, JEEE Trans., 1970, C-19, pp. 141-149

3 TABLOSKI, T.F. Jr.: ‘Analysis and synthesis of minimal multi-
plexer universal logic module trees’. PhD thesis, 1973, Purdue Uni-
versity

4 WHITEHEAD, D.G.: ‘Algorithm for logic circuit synthesis using
multiplexers’, Efectr. Lett., 1977,13, pp. 355-356

5 ALMAINI, A.E.A., and WOODWARD, M.E.: ‘An approach to the
control variable selection problem for universal logic modules’, Dig.
Proc., 1977,3, pp. 189-206

6 LANGDON, G.G. Jr.: ‘A decomposition chart technique to aid in
realisations with multiplexers’, IEEE Trans., 1978, C-27, pp. 154-
159

7 ALMAINI, A.E.A.: ‘Sequential machine implementation using
ULMs’, IEEE Trans., 1978, C-27, pp. 951-960

8 TOSSER, A.J., and AOULAD SYAD, D.: ‘Cascade networks of
logic functions built in multiplexer units’, IEE Prm. E, 1980, 127,
(2), PP. 61-68

9 GORAI, R.K., and PAL, A.: ‘Automated synthesis of combinational
circuits by cascade networks of multiplexers’, JEE Proc. E, 1990,
137, (2), pp. 161-170

10 PAL, A.: ‘An algorithm for optimal logic design using multiplexers’,
JEEE Trans., 1986, C-35, pp. 755-757

334 JEE PROCEEDINGS-E, Vol. 139, No. 4, JULY 1992

Authorized licensed use limited to: Julian Miller. Downloaded on October 19, 2008 at 07:16 from IEEE Xplore. Restrictions apply.

