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Abstract: A programmed algorithm is presented 
for the synthesis and optimisation of networks 
implemented with multiplexer universal logic 
modules. The algorithm attempts level by level 
optimisation selecting the control variables that 
result in minimum number of continuing 
branches. Cascaded networks, if realisable, are 
always found and given preference over tree net- 
works, though mixtures of cascade and tree con- 
figurations are permitted. The algorithm is 
programmed in Fortran and tested for single and 
double control variable modules. In theory, the 
program can be used for any number of variables 
for completely and incompletely specified func- 
tions. 

1 Introduction 

The use of multiplexers as universal logic modules 
(ULMs) for the realisation of logic functions has 
attracted a great deal of attention during the last two 
decades following publications by Yau and Tang [l ,  23. 
Most of the effort was in finding minimal realisations for 
logic functions. This included linear programming and 
numerical methods [3], maximisation of the number of 
ones and zeros connected to the input [4], control vari- 
able selection with view to minimise the number of 
branches in ULM trees [SI, as well as the use of decom- 
position and reduced dependence methods [6,7]. 

A graphical method for cascade implementations 
based on Karnaugh maps was introduced by Tosser et al. 
[8]. The map method, however, limits the maximum 
number of variables that can be considered to six. An 
iterative method for cascade realisations using single 
control multiplexers was presented by Gorai et al. [9]. 
The method terminates if the function is not cascade rea- 
lisable. This paper introduces a programmed algorithm 
which implements any logic function using minimal trees. 
A cascade connection, if possible, is considered a special 
form of a tree with a single input continuing into multi- 
level network. M(c) is used to indicate a multiplexer 
ULM module with c control variable(s). This device has a 
single output and 2' inputs. Any logic function can be 
implemented using ULMs connected as a tree with the 
first level (output stage) having a single ULM, the second 
level having a maximum of 2' ULMs and so on. At any 
level, the logic function is expanded about the control 
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variables used at that level using Shannon's expansion 
theorem [5]. The inputs may be connected to a constant 
(0 or l), a variable ki ,  or a subfunction requiring further 
expansions and ULM levels. ii is used to denote any 
variable xi  which can be true (xi) or complemented (Xi). 

The algorithm works for any number of control vari- 
ables though the program is only tested for c = 1 and 
c = 2, the most common cases. Because c is specified at 
each level, different size modules may be used at  different 
levels if desired. The program automatically finds cascade 
connections, if available, as this reduces the number of 
continued branches. For tree type realisations, the algo- 
rithm permits mixed control variables within each level if 
this results in more branches being terminated with a 
constant or a single variable. The program can be used 
for any number of variables and can handle both com- 
pletely and incompletely specified functions. The search 
for the best choice of control variables is exhaustive at  
the first level. At each subsequent level, an exhaustive 
search is carried out for the best choice of control vari- 
ables amongst the remaining variables. The number of 
computations, however, decreases as the final level is 
approached. This approach was found to give reduced 
computation time though it does not guarantee global 
optimality in all cases. 

2 Theory 

Any n variable logic function f (xl, ..., x,) can be ex- 
panded with respect to any n - 1 variables as follows 

1 xy, ..., xb: ; f ( i l ,  .. ., in - ' ,  x.) 
2 a - 1 - 1  

f (x l ,  .. ., x,) = 
i = O  

where the superscripts i , ,  . . . , i n _  form the binary repre- 
sentation of i 

x; = i j  

x; = x j  

j = 1, ..., n - 1 

The residue functionf(i,, . . . , in- ', x,) is a function of one 
variable x, which can assume any of the values x,, gm, 0 
or 1. 

Such a function can be realised using a single multi- 
plexer with n - 1 control inputs and ?-' data inputs 
P I .  

If smaller multiplexer modules are used, a tree struc- 
ture using l levels can be constructed to realise the func- 
tion where I,,, = [(n - l)/c]. 

The tree may require up to (I' - l)/(I - 1) modules where 

By suitable selection of the control variables used at 
each level, the number of modules may be minimised, 
though the exchange of control variables for the same 

[g] = smallest integer greater than or equal to g. 

I = 2' [SJ. 
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module will only permute the connections to that module 
and does not result in any saving. 

- 1 of the inputs terminate with a variable ii or a 
logical constant and only one input continues into the 
next level, a cascade is generated where a single module is 
used in each level. 

In practice, however, functions that can be imple- 
mented with a simple cascade, or require a complete tree 
are rare. More often, functions lie somewhere in between 
where some inputs may not be connected to other 
modules while other inputs connect to modules in the 
next level and therefore form an incomplete tree as will 
be illustrated in the examples in Section 3. 

It is the aim, therefore, to identify control variables 
that eliminate as many branches as possible, and reduce 
the number of levels and modules required without 
having to resort to completely exhaustive search. 

Theorem 2.1: For an n variable function realised by 
multiplexer tree; if a c control module at level l has an 
input 

there are no entries in the minterm table corresponding 
to this input, or 

then there are 2'"' entries. 

If 

(4 0 

(ii) 1 

Proof: 
(i) If a module has a 0 data input, this input cannot be 

selected, thus there are no entries in the minterm table 
corresponding to the control selection. 

(ii) If an input is 1, all unselected variable can take any 
value. There are n - cl variables unselected (those not 
required to select the 1 input) therefore there must be 
2"-" minterm entries. 

Theorem 2.2: For an n variable function realised by 
ULM tree, if a c control module at level 1 has input i j  
(wherej is not a control used in the I - 1 levels preceding 
the module in question) there are 2"-c'-1 entries in the 
minterm table (with .tj fixed either as x j  or ij). 

Proof: To select the input in question, IC variables are 
required as controls. Thus if i j  is input there must be 
n-(lc + 1) variables unspecified. These can have any value. 
Thus there must be 2"-+' entries in the minterm table. 
Note i j  is fixed so all entries must correspond to either . - .  x .  = x .  or x .  = x .  

J J J I '  

Lemma 2.1: Connected ULMs from different levels of a 
network cannot share a common control variable [SI. 

Theorem 2.3: A M(c) multiplexer can realise any c + 1 
variable function [lo]. 

These theorems are utilised in Steps 3 and 4 of the 
minimisation algorithm in the following Section. 

3 Algorithm 

Step I :  Get the minterms of the given function. Set the 
level I = 1. Calculate the number of variables n. 
Step 2 :  Get the number of control variables per module c 
and check whether the number of variables prior to level 
1, n - c(l - 1) < c + 1. If so, the tree can finish with any 
choice of remaining variables. If not, continue. 
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Step 3: Check if there is any c-tuple of variables { x i , :  
r = 1, ..., c }  for which the number of simultaneous 
occurences in the minterm table 

S c ( i i l ,  . . . , iJ = 0 or 
S&, . . . , ik) = 2"-ci 

(34  
(3b) 

If either of eqn. 3a or eqn. 3b is true, increment the saved 
branch counter yc(xi l ,  . . . , xq) .  Keep a record of the input 
Ic(iil, . . . , iL) = 0 or 1 respectively. 
Step 4: Check if there is any c + 1 tuple of variables 
which satisfy 

If so, check that there is some variable x i k ,  say, which, for 
all simultaneous occurrences, has the same value 

Se+l ( i i l ,  ..., i.4+1) = 2n-ci-1. (44  

(44  
- 

S ~ + l ( i i l , . . . , i i k , . . . , i ~ + ~ ) = o  

yc(xil, ..., Xit-1, ~ i k + l ,  ..., xi ,+i)  

If so, increment the branch saved counter 

Keep a record of the input 
. .  

I c ( i i 1 ,  ..., X i k - 1 ,  xi&+,, ..., i i c + l )  = i i k  

Step 5 :  According to the results of Steps 3 and 4, calcu- 
late which c tuple of variables (to be chosen as controls 
to module) x h l ,  . . . , xh, maximises the number of saved 
branches 

x ( X h l ,  . . . , x k )  = max ( ye (x i l r  . . . , x4) }  
Step 6 :  According to the choice of Step 5, there are 
2' - x inputs to the module in question whose input is 
neither a constant nor a single variable. 

Obtain the reduced subfunctions for the inputs separa- 
tely and derive their minterm tables. If any subfunctions 
are identical, inputs can be connected together and 
further branches saved. Increment the level I:= l + 1. For 
each unique subfunction, go to Step 2 and repeat the pro- 
cedure. 

Example I :  Implement the following function using M(2) 

28, 29, 30, 32, 33, 34, 35, 38, 39,42,43,46,47,48, 
49, 50, 51, 54, 55, 58, 59,62,63) 

f =  c ( 4 ,  5,6, 7, 8, 10, 11,  12, 14, 15, 20, 21,22, 23, 27, 

Step I :  n = 6 , l =  1 
Step 2:  c = 2, n - c(1- 1) = 6 > c + 1 = 3. The minterm 
table is given in Table 1. 

Steps 3 and 4 are carried out for all possible control 
pairs x i ,  x j ,  i # j and, for each pair, determine how many 
inputs have either variables coming in or fixed inputs 0 
or 1. For level 1 = 1, 2"-" = Z4 = 16,2"-"-: = 8. Thus it 
is necessary to find simultaneous pairs S, (x i ,  ij) = 0, 16 
and simultaneous triples S3(iir ij, i,) = 8. The latter 
being subject to eqn. 4b. 

Control pair x l x z  
Sz(il ,  X2) = 10. This branch cannot be saved. 
S2(Xl, x 2 )  = 8. Eqn. 4a is potentially satisfied 
but 
S3(il, x 2 ,  x j )  # 8. Vj (j # 1, 2). This branch cannot be 
saved. 
S2(x l ,  X2) = 10. This branch cannot be saved. 
S 2 ( x l ,  x 2 )  = 10. This branch cannot be saved. 
No branches can be saved at the first level, if x 1  and x 2  
are chosen. 

Control pair x l ,  x 3  
S,(Xl, X3) = 8. Eqn. 4a is potentially satisfied. 
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Table 1 : Mintarms for Example 1 Increment the level 1 = 2. 2"-" = 4, T-''-' = 2. Go to 
Step 2. n - c(1- 1) = 4 > c + 1 = 3. 
For inDut I , x 2  (Table 2) carry out Steps 3,4  and 5.  x 2  x3  x4 x g  x 6  

0 0 0 1 0 0  
0 0 0 1 0 1  
0 0 0 1 1 0  
0 0 0 1 1 1  
0 0 1 0 0 0  
0 0 1 0 1 0  
0 0 1 0 1 1  
0 0 1 1 0 0  
0 0 1 1 1 0  
0 0 1 1 1 1  
0 1 0 1 0 0  
0 1 0 1 0 1  
0 1 0 1 1 0  
0 1 0 1 1 1  
0 1 1 0 1 1  
0 1 1 1 0 0  
0 1 1 1 0 1  
0 1 1 1 1 0  
1 0 0 0 0 0  
1 0 0 0 0 1  
1 0 0 0 1 0  
1 0 0 0 1 1  
1 0 0 1 1 0  
1 0 0 1 1 1  
1 0 1 0 1 0  
1 0 1 0 1 1  
1 0 1 1 1  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 0  
7 1 0 0 1  
1 1 0 0 1  
1 1 0 1 1  
1 1 0 1 1  
1 1 1 0 1  
1 1 1 0 1  
1 1 1 1 1  
1 1 1 1 1  

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

- ~ - .  
Control pair x2,  xs 
S2(Z2, Is)  = 2. Eqn. 4a is satisfied as S3(12, Is, Z6) = 2. 
Eqn. 46 is satisfied. 

S&, xs) = 4.  Eqn. 3b is satisfied. I,&, x5) = 1, y2(x2, 
12(% 1 25) = 26, yZ(x2 7 XS) = 1. 

xs) = 2 

Tabla 2: Reduced minterm table for input i,x, 

x2  x4 x 5  X 6  

0 0 0 0  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 1 0  
0 1 1 1  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  

Sz(x2 , is)  = 2. Eqn. 4a is satisfied as S,(x, , Z5,  x4) = 2. 
Eqn. 46 is satisfied. 

S2(x2, xs) = 2. S,(x,, x5,  ij) # 2, j = 4 or 6. Eqn. 4a is 
not satisified. Thus control pair x2,  x s  saves three 
branches. 

On considering all other pairs of controls, it is found 
that no pair saves more than three branches, hence x2 
and xs are the chosen pair. 

For input x,X, it is found that, for control pair x2 x4, 
all inputs are terminating so xz x4 are the chosen controls 
and no more tests are needed. 

12(x2, 2 5 )  = x47 YZ(X2 7 xs) = 3. 

Step 6 :  There is only one reduced subfunction, corre- 
sponding to input Xlx, x2 xs as given in Table 3. 

Tabla 3: Reduced minterm tabla for input i,x,x,x, 
S3(X,, X,, x4) = 8, and S,(X,, I,, f4) = 0. This branch 
can be saved. 
12(il,  I,) = x4. 
YZ(XI9 x3) = 1; - For the next inputs 0 1  

x 4  x 6  

Sz(I,, x3) = 10. Sz(x,, 13) = 12. These branches cannot 
be saved. 
S2(xlr x,) = 8. Eqn. 4a is potentially satisfied. 
S3(x1, x,, x5) = 8, and S,(x,, x3, 15) = 0. Another 
branch is saved. 
Iz(X1, x3) = x5 ' 
YAXl,  x3) = 2. 
Carrying out the tests in Steps 3 and 4 for all control 
pairs causes the conclusion that the most saved branches 
for any pair is two. Choose x1 and x, as the initial 
control variables (Step 5). We depict the initial module in 
Fig. 1. 

Step 6 :  Obtain the reduced subfunctions for the non- 
terminating inputs Z,x, and x l i , .  

to next level 

X 1  x 3  

Fig. 1 
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First stage realisation of example I 

Increment the level I =  3. Go to step 2. 
n - c(l - 1) = 2 < c + 1 = 3. Choose any pair of control 
variables. Choose x4 x6. Thus the complete tree is given 
in Fig. 2. 

ModiJication for incompletely speciJied functions 
In this Section a dash indicates quantities determined 
from the minterm table of incompletely specified terms. 

x 2  XL 

Fig. 2 Complete implementation of example I 
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Step 3': If neither eqn. 3a nor eqn. 36 are true, check 
whether 

(3)' SC(XiI, ..., i,) + S&, ..., i,) = 2"-l 

If so, Ic(iil, ..., iic) = 1. Increment the saved branch 
counter 

YAXii. . . ., xi)  

S c + l ( i i , ,  ...) &+,) < 2"-"-' 

sc+l(%l> . . ., Xik, . . . , i i < + I )  = 0 
SC+l(ii l ,  ..., i i k ,  ..., i i < + J  

Step 4': If eqn. 4a is not satisfied and 

Check whether there is a variable xik which satisfies 
(h)' 

(44' 

+ S:+l(iil, ..., iik, ..., i&+,) 

( 4 4  
- - 2n-rl-1 

If so, input 

Increment the branch saved counter 

. .  
Ic(ii1, ..., xik-,, x ikt l ,  ..., i i c + l ) = i i k  

YAXi1, ...) xik-1, xiktl, ..., xi ,+,)  

Example 2: Implement the following incompletely speci- 
fied function using M(2). 

f =  c(1, 2, 3, 4, 5, 6, 8, 16, 17, 18, 21, 22, 29, 31) 
+ c(7, 10, 12, 13, 19, 24, 25, 26, 27) 

d 

Step 1 :  n = 5 , l =  1 
Step 2: c = 2, n - c(l - 1) = 5 > c + I. The minterm 
table is given in Table 4. 

Table 4: Minterm table for example 2 including don't care 
conditions 

x1 x2 x3 x4 x5 

0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 1 0 0 0  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 1 0 1  
1 0 1 1 0  
1 1 1 0 1  
1 1 1 1 1  

d , O  0 1 1  1 
d - 0  1 0  1 0  
d ; O  1 1  0 0 
d , O  1 1  0 1 
d . 1  0 0 1 1  
~ 1 1 0 0 0  
d , 1  1 0  0 1 
d , 1  1 0  1 0  
d . 1  1 0  1 1  

Steps 3' and 4 :  One exhaustively searches all pairs of 
variables x i ,  x j i  # j and for each pair determine how 
many inputs have either variables coming in or fixed 
inputs 0 or 1. To do this, apply the tests described in 
Steps 3' and 4 .  For the first level 2"-" = 8 and 

= 4. Thus one is looking for simultaneous pairs 2"-cl-1 
S2( i ir  ij) = 0 or S2(iir ij) + Yz(ii, ij) = 8 and simulta- 
neous triples S 3 ( i i ,  i j ,  2,) + F3(ii, i j ,  i,) = 4. 
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Control pair x l ,  x 2  
S,(X,, 2,) = 6, S;(X,, X,) = 1 (d , ) .  Eqn. 3' and eqn. 4a' are 
not satisfied. 
S2(Xlr x,)  = 1, S,(X,, x,) = 3 ( d 2 ,  d 3 ,  d4). However eqn. 
4c' cannot be satisfied for any triple. 
Sz(x l ,  X2) = 5, S; (x l ,  X,) = 1 (d5).  Eqn. 3' and eqn. 4a' are 
not satisfied. 
Sz(x l ,  x 2 )  = 2, S z ( x l ,  x,) = 4 ( d 6 ,  d , ,  d , ,  d9). Eqn. 3' is 
not satisfied. 

It is found that S3(x l ,  x , ,  X5) = 0 and S3(x1.  x 2 ,  x 5 )  
+ S;(x, ,  x ,  , x 5 )  = 4. Eqn. 4b' and eqn. 4c' are satisified 

provided we choose d ,  and d,. Thus Ic(xl, x,)  = x 5 .  
Increment the saved branch counter y2(x1 ,  x , )  = 1. Now 
select another control pair. 

Control pair x,, x 3  
S,(X,, X3) = 4, S;(Xl, X3) = 1 (d,) .  Eqn. 3' is not satisfied. 
Eqn. 4c' is potentially satisfied. However, examination of 
the minterm table shows S3(X1, X 3 ,  ij) # 4 Vj,  j # 1, 3. So 
this input cannot be saved. S,(X,, x3)  = 3, fz(Xl, x3).= 3 
(d , ,  d ,  , d4). Eqn. 3' is not satisfied. Eqn. 4c' is potentially 
satisfied. Choosing don't care d,, we find S3(X,, x 3 ,  x , )  = 
0 and S3(Xl, x 3 ,  2,) + S;(X,, x 3 ,  i2) = 4 so that 12(Xlr 
x 3 )  = X, and y2(x1 ,  x 3 )  = 1. 
S z ( x l ,  X3) = 3, S'(x,, X3) = 5 (d5 - d9). Potentially eqn. 3' 
or eqn. 4c' are satisfied, as S2(x1 ,  5,) + S; (x l ,  23) = 8 
giving l z ( x l ,  i3) = 1. 
S3(x1 ,  X 3 ,  x , )  = 0 and S3(x , ,  X 3 ,  X,) + S;(x, ,  X3, Xz) = 4 
(d5)  giving I z ( x l ,  X,) = X, . 
Thus again an input can be saved, y,(x, ,  x 3 )  = 2 and 
there is a choice of input. Considering the last input, it is 
found that S 2 ( x l ,  x 3 )  = 2. 
S 2 ( x l ,  x 3 )  = 0. Neither eqn. 3' or eqn. 4 can be satisfied. 
Continuing to work through all possible control pairs, it 
is found that control choice x ,  and x 5  also saves two 
branches, all other control choices save less than two 
branches. 
Step 5 :  Control variables x1 and x ,  are chosen for the 
first level. The first module is shown in Fig. 3. 

m to next level 

1 or X2 
* z  -1 tf 

to next level --1 I I 
X 1  x 3  

Fig. 3 First stage implementation ofexample 2 

S t e p 6 :  On obtaining the reduced subfunction for the 
nonterminating inputs X,X3 and x l x 3 ,  it is found that the 
reduced subfunctions are nonidentical, so no further 
branches can be saved. 

Increment the level, 1 = 2. For each subfunction we go 
to Step 2. It is found that n - c(1- 1) = 3 = c + 1, hence 
the tree network can finish with control choices x , ,  x 4 .  
The complete tree realisation is seen in Fig. 4. 

4 Cascade realisable functions 
The algorithm performs exhaustive search at the first 
level (stage). The control variables resulting in the most 
non-continuing branches (branches terminating with ii, 0 
or 1) are selected. No further levels are required if all the 
inputs terminate. If choice is possible, then any can be 
selected with the knowledge that the cascade solution, if 
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any, will always be found. That this statement is true can 
be seen from Theorem 4.1. To illustrate this situation 
consider the following example. 

I 1  
x2 x4 

Fig. 4 Complete implementation of example 2 

Example 3 

f = c(0, 1,4, 9, 13, 16, 17, 18, 19, 20,21, 22, 23, 24, 25, 
26, 21, 28, 29, 30, 31, 34, 35, 38, 39, 42,43, 46,47, 
48,49, 52, 53, 56, 57, 60,61) 

The computer program gives the solution in Fig. 5. 

0 q - p ~ ~ ~ ~ f  1 x5 

' 4  ' 6  y3 K5 "1  x2 

Fig. 5 Cascade implementation ofexample 3 

In fact, x l x 2  is not the only choice to make the first 
level cascade realisable. x l x s  and x 2  x5  are other choices. 
Because the program will keep the first one it has found, 
the question arises as to whether it can happen that some 
choices may give cascade networks and others do not. 

The Karnaugh map of Example 3 (Fig. 6) is given to 
illustrate that, if there is choice of cascade realisability at 
a certain level, the algorithm could find the cascade 
network at the next level if it exists irrespective of the 
control pair choice. 

\ 

X 1 '  

Fig. 6 
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Split K-map oJexample 3 

Fig. 6 shows the K-map being split with respect to 
x 1 x 2  or x 1 x 5 .  For pair x 1 x 2 ,  all parts except XIX2 are 
typical loops [8] which guarantees that their inputs are 
connected to constants or single variable rather than 
other modules. For pair x l x s ,  the X,Xs part is the only 
region not containing a typical loop. Under the condition 
that both choices are cascade realisable at the first level, 
all parts except where X1X2 and XlfS intersect must be. 
typical loops. The subfunction of the next level is defined 
by the minterms in the regions XIX, or f , X 5  depending 
on which choice has been made. However, in either case, 
the minterms which are included in the overlapping area 
of flX2 and X l f s  determine whether the remaining suh- 
function is cascade realisable at the next level. The above 
argument is now generalised with the aid of Theorem 4.1. 

Theorem 4.1; Let f be an M(c) (c = 1, 2) cascade realis- 
able function at level 1 with controls x,(c = 1) or x, ,  x ,  
(c = 2) and at level 1 + 1 with controls x,{c = 1) or x j ,  
xk(c = 2). In addition, let f be level 1 cascade realisable 
with different controls x,  (c = 1)  or x, ,  x ,  (c  = 2) then 
controls can always be found for whichfr+l is cascade rea- 
lisable. 

Proof: Consider the case of two control variables (c  = 2). 
This is depicted in Fig. 7a 

(la) f i  = X,X,f r+l  + alX,x,  + a z x . i ,  + a 3 x , x ,  

f i + l  = X j X k f r + 2  + b1Xjxk + b2xjXk + b3XjXk ( l b )  
fit2 = fr+2(xi)  i f n, m , j ,  k ( 1 4  

From the theorem conditions fr is also given by (see Fig. 

(14  
7b) 

f - - -  , - x,x ,  f ; + l  + clX,x,  + c2x,X,  + c j x , x ,  

'k x n  xm 
a 

xr xs 
b 

xr 

Alternative cascade realisations oJlogicfunction 

d 

Fig. 7 
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Equating eqn. l a  and eqn. Id and multiplying (AND 
operation) by X, Zs we find 

fi = X,X, f;+, + C I X , X .  + c 2 x , X ,  + c 3 x , x ,  ( 2 4  
f ; + ,  =I,?, f ; + 2 + u l X n x , + u 2 x , X , + a 3 x , x ,  ( 2 4  

f ; + 3  = f ; + 3 ( ~ i )  = f i + 2 ( x i )  i f r ,  s, n, m,j .  k (26) 
f ; + 2  = X j x , f ; + 3  + blx jxk  + b2xj.tk + b , x j x ,  ( 2 ~ )  

If any bi or ai  involve x, or x ,  because of multiplication 
by X,X, in eqn. 2a these terms will vanish. While, if X, or 
X, is involved, the inputs become 1. 

If x, = x ,  a control is shared. In this case eqn. 2b 
becomes 

f;+, = X m f ; + 2  + a , x ,  (3) 
If, in addition, x ,  is chosen to equal x j  then eqn. 3,  eqn. 
2b and eqn. 2c can be written as follows 

f ; + l  = x j % k  f ; + 2  + b1xjXk + alx jgk  + alXjXk ( 4 4  

f ; + 2  = f ; + 3  ( 4 4  
Thus it can be seen that f;, I is cascade realisable with 
controls j, k. If x j  = x , ,  eqn. 2a and eqn. 2b are 
unchanged so again the theorem is true. If x, = x, and 
xk  = x,, eqn. 2a is unchanged and eqn. 2b becomes eqn. 3 
while eqn. 2c becomes 

f ; + 2 = X j f ; + 3  + b z x j  (5 )  
Eqn. 3 and eqn. 5 combine to give 

f;+, = Z m X j  f ; + 2  + b 2 X , x j  + u,x ,Xj  + a l x , x j  

For a single control ( c  = 1 )  eqns. la-d become (see 

fr = X . f r + l  + a l x ,  ( 6 4  
f i + l  =Xjh+2 + blx j  (66) 

=fiC2(xi) i z n , j  ( 6 4  

fi = w ; + 1  + c1x. (64 

Hence here toof;, , is cascade realisable. 

Figs. 7c and 7d 

As before, equating eqn. 6a and eqn. 6d and multiplying 
by f, 

It is clear from the above equations thatf;,, is cascade 
realisable for any value of r (including j). Hence the 
Theorem is proved. 

5 Conclusion 

A programmed algorithm for the synthesis of optimised 
multiplexer networks is presented. Level by level opti- 
misation techniques were employed and found to give 
optimal results in all examples attempted. Multilevel 
optimisation techniques may further improve the results, 
but would significantly increase the complexity of the 
procedure and hence increase the computation time. The 
algorithm can handle any number of variables for com- 
pletely and incompletely specified logic functions. 
Redundant variables, if any, are automatically eliminated. 
The program was written in Fortran-77 and run on a 
DEC micro VAX 11. Computation time was found to 
increase with the number of variables, number of min- 
terms and number of control variables. All the examples 
given in this paper took less than 8 seconds of CPU time. 
A larger example of 20 variables and 200 minterms 
requiring 521 M ( 2 )  modules, took about 30 minutes of 
CPU time. For functions much larger than 20 variables, 
heuristic based algorithms may be desirable. The 
program listing can be obtained from one of the authors. 
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