
Function Optimization using Cartesian Genetic
Programming

Julian F. Miller
Electronics Department
University of York, UK

julian.miller@york.ac.uk

Maktuba Mohid
Electronics Department
University of York, UK

mm1159@york.ac.uk

ABSTRACT
In function optimization one tries to find a vector of real
numbers that optimizes a complex multi-modal fitness func-
tion. Although evolutionary algorithms have been used ex-
tensively to solve such problems, genetic programming has
not. In this paper, we show how Cartesian Genetic Pro-
gramming can be readily applied to such problems. The
technique can successfully find many optima in a standard
suite of benchmark functions. The work opens up new av-
enues of research in the application of genetic programming
and also offers an extensive set of highly developed bench-
marks that could be used to compare the effectiveness of
different GP methodologies.

Categories and Subject Descriptors
I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming; D.1.2 [Software]: Automatic Programming

General Terms
Algorithms

Keywords
Genetic programming, function optimization

1. INTRODUCTION
Function optimization benchmarks have become highly

developed particularly through criteria for competitions at
conferences [2]. Almost without exception, optimization
techniques operate in the domain of the objective function
so that the algorithms manipulate the arguments of the op-
timization function. We refer to this as a direct representa-
tion. It is not clear, a priori that evolving solution using a
direct representation will allow optimization algorithms the
best chance to optimize these complex functions. However,
to date except for a couple of studies indirect approaches to
function optimization have almost totally been neglected.
Pujol and Poli proposed a parameter mapping approach
(PMA) in which genetic programming is used to evolve a
program which from a collection of random constants and
a single independent variable of the optimization function
(they call it a parameter) returns an improved value for this
variable [5]. The same evolved program is used to produce

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

improved values for all the independent variables. Walker
and Miller used CGP for evolving programs that wrote bi-
nary bits on a finite tape, thus outputing binary strings [7].
They showed that this was an effective method of solving
two binary problems. They applied a similar technique to
three real-valued optimization problems [8].

Here we propose a new approach using Cartesian Genetic
Programming [4] to construct a program that maps numeric
constants to independent variables. Apart from possible ad-
vantages this approach might bring to the optimization of
difficult functions, the proposed approach offers the genetic
programming (GP) community a highly developed set of
benchmarks that could be used to compare the effectiveness
of various GP approaches [3].

2. RELATIONS BETWEEN COORDINATES
OF OPTIMA

In general if one was trying to optimize a complex ma-
chine involving d variables, one would expect many of the
variables to be mathematically related. Indeed, imagine that
the optimization function is differentiable. The normal pro-
cedure for obtaining the optima would be differentiate the
function with respect to each variable and equate the partial
derivatives to zero (actually optima may lie on boundaries,
we don’t consider this situation here). This would give d
equations, in many cases these would relate the coordinates
of the optima to each other. Here is a simple example.

2.1 An illustrative function
Consider the non-separable, non-convex optimization func-

tion [1] given by:

f(x) =
d∑

k=1

[(k + 1) sin(x1) − xk+1]
2 (1)

Taking partial derivatives we obtain:

∂f

∂x1

= 2 cos(x1)
d∑

k=1

(k + 1)[(k + 1) sin(x1) − xk+1](2)

∂f

∂xk

= −2[(k + 1) sin(x1) − xk+1] (3)

(4)

Thus optima occur when (k ≥ 2)

xk+1 = (k + 1) sin(x1) (5)



So the set of optima are a function of a single variable
x1! This implies that if a method could be found that could
relate x1 and xk to each other through a mathematical ex-
pression, it ought to be able to find the coordinates of the
optima more easily than by random variation of the variables
xk. Classic direct function optimization techniques attempt
to discover numerical values for each variable independently,
whereas genetic programming can discover functional rela-
tionships between variables. Often in function optimization
transformations are made to the variables such as random
shifting. However, applying a random shift breaks the func-
tional relationship between variables. In the context of a
GP approach this makes no sense!

3. CARTESIAN GP AND EXPERIMENTAL
PARAMETERS

Cartesian genetic programming (CGP) is a graph-based
form of genetic programming [4]. The genotypes encode
directed acyclic graphs and the genes are integers that rep-
resent where nodes gets their data, what operations nodes
perform on the data, and where the output data required by
the user is to be obtained. When the genotype is decoded,
it can happen that some nodes are not referenced (i.e. they
and their genes are ‘non-coding’). We call the graph that
results from this decoding, a phenotype. The genotype in
CGP has a fixed length. However, the size of the phenotype
(number of nodes) is variable. In this study, the inputs (or
terminals) xi, are generated randomly at the start of each
evolutionary run. We generated ten real-valued constant in
range [-1, 1]. The function set chosen for this study are de-
fined over the real-valued interval [-1.0, 1.0]. The number
of outputs is no = d, where d is the dimensionality of the
optimization problem. Since the terminals and functions all
return numbers in the interval [-1, 1] the program outputs,
pi also have values defined in this range. However the op-
timization functions are defined over a variety of intervals,
which we denote by [li, ui]. Thus the program outputs, pi,
need to be mapped to the intervals defined in the optimiza-
tion problem, qi. We do this using the set of linear mappings
defined in equation Eqn. 6.

qi =
ui − li

2
pi +

ui + li

2
. (6)

The primitive functions we used are the average of the
two inputs, and the product of the inputs. In preliminary
experiments we found these functions to work well. Unlike
standard CGP, three mutation parameters were defined. A
probability of mutating connections, µc, functions, µf and
outputs, µo. As is standard in CGP a variant on a simple 1+
λ evolutionary algorithm was used, where λ = 4 [4]. Thus in
each population of five, one is the parent (promoted from the
previous population) and the offspring are produced through
mutation. In all experiments µc = 0.001, µf = 0.002, and
µo = 0.03. We set the genotype length to be 1000 nodes.

It is well known that CGP genotypes have many non-
coding genes this leads to many offspring having the same
phenotype as their parent. Thus, before we evaluate the
fitness of the offspring we compare its output vector to the
output vector of the parent, if it is identical we set its fitness
to that of its parent. If it is not-identical we calculate its
fitness and increment the variable that counts the number
of fitness evaluations. In this way we can set a limit on the
number of fitness evaluations.

4. RESULTS
Vesterstrom compared the performance of Differential evo-

lution (DE), Particle Swarm Optimization (PSO) and an
evolutionary algorithm (SEA) on a series of benchmark func-
tions [6]. We compared the performance of CGP on these
benchmarks under the same experimental conditions. We
found that that for 15/20 benchmarks CGP attains the same
of better (statistically significant) solutions than DE, while
in 19/20 cases CGP attains the same or better solutions than
PSO or SEA. Clearly it is a promising method.

5. CONCLUSIONS
We have described the application of CGP to function

optimization. Such an approach, in addition to finding the
optima of functions, allows functional relationships between
variables to be found, thus potentially reducing the dimen-
sionality of the problem and leading to a deeper under-
standing of the optimization problem. Clearly the work
requires more experimental analysis and comparisons with
other methods and also new kinds of benchmarks could be
devised which show the advantages of the proposed method.
We suggest that using GP to solve these kinds of problems
opens up a new area of application for GP and also pro-
vides benchmarks whereby different GP techniques can be
compared with one another.

6. REFERENCES
[1] Hansen, N., Ros, R., Mauny, N., Schoenauer, M.,

Auger, A.: Impacts of Invariance in Search: When
CMA-ES and PSO Face Ill-Conditioned and
Non-Separable Problems. Applied Soft Computing 11,
5755–5769 (2011)

[2] Mallipeddi, R., Suganthan, P.N.: Problem Definitions
and Evaluation Criteria for the CEC 2010 Competition
on Constrained Real-Parameter Optimization. Tech.
rep., Nanyang Technological University (2010)

[3] McDermott, J., White, D.R., Luke, S., Manzoni, L.,
Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K.,
Harper, R., Jong, K.A.D., O’Reilly, U.M.: Genetic
programming needs better benchmarks. In: Proc.
Genetic and Evolutionary Computation Conference
(GECCO) 2012. pp. 791–798. ACM (2012)

[4] Miller, J.F. (ed.): Cartesian Genetic Programming.
Springer (2011)

[5] Pujol, J.C.F., Poli, R.: Parameter Mapping: A genetic
programming approach to function optimization. Int. J.
of Knowledge-Based and Intelligent Engineering Syst.
12, 29–45 (2008)

[6] Vesterstrom, J., Thomsen, R.: A comparative study of
differential evolution, particle swarm optimization, and
evolutionary algorithms on numerical benchmark
problems. In: Evolutionary Computation, 2004.
CEC2004. Congress on. vol. 2, pp. 1980 – 1987 (2004)

[7] Walker, J.A., Miller, J.F.: Changing the genospace:
Solving GA problems with cartesian genetic
programming. In: Proc. EuroGP. LNCS, vol. 4445, pp.
261–270. Springer (2007)

[8] Walker, J.A., Miller, J.F.: Solving real-valued
optimisation problems using cartesian genetic
programming. In: Proc. GECCO. pp. 1724–1730. ACM
(2007)


