
Developing Neural Structure of Two Agents that Play
Checkers Using Cartesian Genetic Programming

Gul Muhammad Khan
Electronics Department

University of York
York, YO10 5DD,UK

gk502@ohm.york.ac.uk

Julian F. Miller
Electronics Department

University of York
York, YO10 5DD,UK

jfm7@ohm.york.ac.uk

David M. Halliday
Electronics Department

University of York
York, YO10 5DD,UK

dh20@ohm.york.ac.uk

ABSTRACT
A developmental model of neural network is presented and
evaluated in the game of Checkers. The network is devel-
oped using cartesian genetic programs (CGP) as genotypes.
Two agents are provided with this network and allowed to
co-evolve untill they start playing better. The network that
occurs by running theses genetic programs has a highly dy-
namic morphology in which neurons grow, and die, and neu-
rite branches together with synaptic connections form and
change in response to situations encountered on the check-
ers board. The method has no board evaluation function,
no explicit learning rules and no human expertise at play-
ing checkers is used. The results show that, after a number
of generations, by playing each other the agents begin to
play much better and can easily beat agents that occur in
earlier generations. Such learning abilities are encoded at
a genetic level rather than at the phenotype level of neural
connections.

Categories and Subject Descriptors
I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming—Program synthesis; I.2.6 [ARTIFICIAL IN-
TELLIGENCE]: Learning—Connectionism and neural nets

General Terms
Algorithms, Design, Performance

Keywords
Cartesian Genetic Programming, Computational Develop-
ment, Co-evolution, Artificial Neural Networks, Checkers

1. INTRODUCTION
Ever since the beginnings of the field of Artificial Intelli-

gence research, building computer programs that play games
has been considered a worthwhile objective. Indeed, as early
as 1950, Claude Shannon published an influential paper on

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

computer chess [15]. Shannon developed the idea of using
a game tree of a certain depth and advocated using a board
evaluation function. This function allocates a numerical
score according to how good a board position is for a player.
The method of minimax was developed by a number of peo-
ple and has a complicated genesis [3], although it is often
attributed to von Neumann [11]. Arthur Samuel presented a
seminal paper in 1959 on computer checkers [12] in which he
refined, during play, a board evaluation that was a weighted
sum of various factors that are important in determining
the favourability of a board position for a player. Samuel
used the board evaluation function to determine a numeri-
cal value for a board position and then applied minimax to
evaluate a game tree of a particular depth. His method was
’self-learning’, since after two computer players have played
a game, the loser is replaced with a deterministic variant of
the winner by altering the weights on the features that were
used, or in some cases replacing features that had very low
weight with other features. Nowadays, the game of check-
ers is considered solved [14]. The current world champion
at checkers is a computer program called Chinook[13]. This
program is mostly based on a linear handcrafted evaluation
function that considers several features of the game board
including: 1) piece count, 2) kings count, 3) trapped kings,
4) turn, 5) runaway checkers and other minor factors. In
addition the program has: 1) access to a library of opening
moves from games played by grand masters, 2) the complete
endgame database for all boards with eight or fewer pieces.
The program is completely based on human knowledge and
no machine learning methods are used in its development.

Chellapilla and Fogel produced a checker playing program
called Anaconda [4]. They used co-evolution of artificial
neural networks (ANNs) and were able to evolve an ANN
that could play at master level. The role of the ANN was to
provide a board evaluation function in a minimax procedure.

Although the history of research in computers playing
games is full of outstanding and highly effective methods
none of them bear much resemblance to the methods that
human beings appear to use to play games well. Firstly,
human beings do not employ minimax and secondly, they
do not use a numerical board evaluation function. Typi-
cally they consider relatively few potential board positions
and evaluate the favourability of these boards in a highly
intuitive and heuristic manner. They usually learn during
a game, indeed this is how, generally humans learn to be
good at any game. So the question arises: How is this pos-
sible? Can a method be devised in which a computer plays
a game without having a board evaluation function? Obvi-

2169



ously it needs a method that decides a move, but this does
not have to mean that such a method has to use a function
that compares the favourability of whole collection of possi-
ble board positions each time a move should be made. This
is the approach we have taken. In our work we are inter-
ested in how an ability to learn can arise and be encoded in
a genotype that when executed gives rise to a neural network
that can play a game well. The genotype we evolve is a set
of computational functions that represent various aspects of
biological neurons [6]. Each agent (player) has a genotype
that grows a computational neural structure and through
co-evolution, the developed structure allows the players to
play checkers increasingly well. Our method employs very
few, if any, of the traditional notions that are used in the
field of Artificial Neural Networks. Instead, all aspects of
neural functions are obtained ab initio through evolution of
the genotype.

Section 2 gives an overview of Cartesian Genetic Program-
ming, section 3 provide an overview of neural development,
section 4 describes the structure and operation of our com-
putational network, section 5 describes our results from the
co-evolution of two agents playing each other and section 6
provides some concluding remarks.

2. CARTESIAN GENETIC PROGRAMMING
(CGP)

Cartesian Genetic Programming, which developed from
the work of Miller and Thomson [10, 9], represents programs
by directed acyclic graphs. CGP use a rectangular grid of
computational nodes, but the number of rows can be one (as
used in this paper). The genotype is a fixed length list of
integers, which encode the function of nodes and the connec-
tions of the directed graph. The nodes can take their inputs
from either the output of a previous node or from a program
input (terminal). The number of inputs that a node has is
dictated by the number of inputs that are required by the
function it represents. The phenotype is obtained by follow-
ing the connected nodes from the program outputs to the
inputs. In this process, some node outputs may not be used
so that their genes have no influence on the final decoded
program. Such non-coding genes have no effect on genotype
fitness.

3. NEURAL DEVELOPMENT
Multicellular biological systems are built through a de-

velopmental process from relatively simple gene structures.
The same technique could be used in computational develop-
ment to produce complex systems from simple systems that
are capable of learning and adapting. Phenotypes are devel-
oped through the interaction of genes at different hierarchi-
cal levels, this provides the capability of self-organization,
which, for example, can be seen in an ant colony [5], [2].

It is well known that evolutionary algorithms can get stuck
at local optima, and measures used to counter this, such as
increasing mutation rates, are only useful at early stages
of evolution when solutions are not very fit. However, small
mutational changes of developmental systems can sometimes
completely change the kind of phenotype developed. This
can alleviate the problems of being trapped.

Most ANN models ignore the fact that neurons are part
of a phenotype which is derived from the genotype through
a process called development [7] (page 339-40). The infor-

mation in the genotype specifies the rules for developing the
nervous system, based on environmental interaction during
the developmental phase.

4. THE CGP COMPUTATIONAL NETWORK
(CGPCN)

This section describes the structure of the CGPCN, along
with the rules, and evolutionary strategy used to evolve the
system.

The CGPCN network has two main aspects:

• Neurons with dendrites, dendrite branches, and an
axon with axon branches.

• A genotype of seven chromosomes representing the ge-
netic code of each neuron.

The first aspect defines the neural components and their
properties, and the second is concerned with the internal
behaviour of the neurons in the network. Each genotype
consists of seven chromosomes, each represented as a digital
circuit using CGP. These chromosomes represent the func-
tionality of different parts of the neuron. During evolution
the second aspect(genotype) is evolved so that the pheno-
type that results has the best functionality, whereas the first
aspect (the neural components and their properties) only
change during the life time of the network, i.e while it is
performing the learning task.

The CGPCN is organized in such a way that neurons are
placed randomly in a two dimensional grid (the CGPCN
grid) so that they are only aware of their spatial neighbours
(as shown in figure 1). The initial number of neurons is spec-
ified by the user. Initially, each neuron is allocated a random
number of dendrites, and dendrite branches, one axon and
a random number of axon branches. Neurons receive infor-
mation through dendrite branches, and transfer information
through axon branches to neighbouring neurons. Branches
may grow or shrink and thus move from one CGPCN grid
point to another, They can produce new branches, and can
disappear. Neurons may produce new daughter neurons, or
may die. Axon branches transfer information only to den-
drite branches in their proximity.

Information processing in the network starts by selecting
the list of active neurons in the network and processing them
in a random sequence. This sequence is called a cycle. The
processing of neural components is carried out in time-slices
so as to emulate parallel processing. Each neuron takes the
signal from its dendrites by running the dendrite electrical
processing chromosomal program. The signals from den-
drites are averaged and applied together with the existing
soma potential to the soma program. This is run to get
the final value of soma potential, which is used to decide
whether it will fire or not. If it fires the action potential
signal is transferred to other neurons through axosynaptic
branches. The same process is repeated in all neurons. The
functionality of each neuron is determined by the seven CGP
chromosomes (described below).

In addition we have included a number of specific param-
eters for different components. These are the statefactor,
health, weight and resistance. These are described below,
see also figure 3. When a neural component’s statefactor
is zero it is considered to be active and the corresponding
genetic program is run. The value of the statefactor is af-
fected by CGP programs. After each neural network cycle

2170



Key:

Dendrite

Axon

Dendrite branch

Axo-synaptic branch

Soma

Input axo-synaptic branch

Output dendrite branch

Figure 1: A schematic illustration of a 3×4 CGPCN
grid. The grid contains seven neurons, each neuron
has a number of dendrites with dendrite branches,
and an axon with axon branches. Inputs are applied
in the grid using virtual axons. Outputs are taken
through virtual dendrite branches. Note that the
system does not distinguish relative locations within
each grid point, the fine detail is included for clarity
of illustration only.

the potential of the soma and the branches are reduced by
certain factor(2%) and the statefactor is decremented. The
reduction in potential occurs to emulate the natural decay
of action potential voltages in real neurons, and the reduc-
tion in statefactor is there to make inactive branches and
neurons move towards activity. After a user defined num-
ber of cycles(5 in this case) of the network, the health and
weight of neurons and branches are also reduced by certain
factor(2%). When the health of a neuron or branch falls
below a certain threshold(10%), it dies and is removed from
the network. The health parameter was included so that
there would be tendency for neurons and branches to fade
away and evolution is responsible for producing programs
that maintain stability against this background decay pro-
cess. The resistance is a parameter that is used to control
growth and/or shrinkage of dendrites and axons.

4.1 CGP Model of Neuron
Each chromosome is a digital circuit that operates on 32-

bit binary numbers. Individual CGP nodes consist of one
of four 2 to 1 multiplexer operations [8], that are obtained
by successive inversion of one or both data inputs. The
seven chromosomes that define neural functionality are di-
vided into three categories; Electrical Processing (3), Life
Cycle Processing (3) and Weight Processing (1).

4.1.1 Electrical Processing
The electrical processing chromosomes are responsible for

signal processing inside each neuron and for communication
between neurons. They represent respectively, dendrites,
soma and axons (as shown in Figure 2).

Electrical Processing in Dendrite This handles the
interaction between potentials of different dendrite branches
belonging to the same dendrite. Figure 2 shows the inputs
and outputs. The input consists of potentials of all the active
branches connected to the dendrite and the soma potential.
The CGP program produces the new values of the dendrite
branch potentials as output. The potential of each branch
is processed by adding weighted values of resistance, health,
and weight of the branch. The statefactor of each branch is
adjusted based on the updated value of branch potential.

Dendrite branch 
electrical CGP 

Soma potential

Potential of 
connected dendrite 
branches

Updated 
potential of 
connected 
dendrite 
branches Soma electrical 

CGP 

Soma potential

Average 
potential of 
connected 
dendrite

Feeds into Soma 

Firing Threshold
Function

Axosynapse
electrical 

CGP

Soma potential
Synapse 
potential

Potential of 
neighbouring 
dendrite 
branches

Updated 
potential of 
neighbouring 
dendrite 
branches

Figure 2: Schematic diagram of the three electrical
processing CGP programs showing inputs and out-
puts: Dendrite branch, Soma and Axo-synapse.

Electrical Processing in Soma This is responsible for
determining the value of soma potential after receiving sig-
nals from all the dendrites. A two stage averaging process
is used to arrive at the scalar potential value used as input
to the soma CGP program:

1. The potential in each dendrite is calculated as the av-
erage of the potential from all daughter branches of
that dendrite.

2. The potential input to the soma is calculated as the
average potential of all dendrites in the neuron.

The input potential along with the existing soma potential
are applied as the two scalar inputs to the chromosome as
shown in Figure 2. The chromosome produces an updated
value of the soma potential. This is further processed using
a weighted sum that incorporates the health and weight of
the soma.

The processed potential of the soma is then compared with
the threshold potential of the soma, and a decision is made
whether to fire an action potential or not. If the soma fires
it is kept inactive (refractory period) for a number cycles by
changing its statefactor, then the soma life cycle chromosome
is run, and the output potential is signalled to other neu-
rons by running the axosynapse electrical processing chro-
mosome. The threshold potential of the soma is adjusted to
a new value if the soma fires.

Electrical Processing in Axo-Synaptic Branch Fig-
ure 2 shows the inputs and outputs to the chromosome re-
sponsible for the electrical processing in each axosynaptic
branch.

This chromosome produces the updated values of dendrite
branch potentials and the axo-synaptic potential as output
(see figure 2). The axo-synaptic potential is further pro-
cessed as a weighted sum incorporating the health, weight
and resistance of the axo-synaptic branch. Then the axo-
synaptic branch weight processing program is run (see fig-
ure 4) and the processed axo-synaptic potential is assigned
to the dendrite branch having the highest updated weight,
replacing its previously updated potential. This emulates
how biological neurons communicate electrically. After this,
the statefactor of the axosynaptic branch is also updated.
If the axo-synaptic branch is active its life cycle program is
executed.

4.1.2 Life Cycle of Neuron
This section summarises the life cycle activities in the

network. The life cycle is responsible for increases or de-

2171



Dendrite Branch
 Life Cycle

CGP

Branch Health

Branch 
Resistance

Updated Branch 
Health

Branch Weight

Updated Branch 
Resistance

Soma Health

Soma Weight

Updated Soma 
Health

Updated Soma 
Weight

Axosynapse
Health

Axosynapse
Resistance

Updated 
Axosynapse
Health

Updated 

Axosynapse

Resistance

Resistance: determines whether 
branches grow or shrink

Health: decides whether 
component will replicate, stay 
the same or die

Weights: used in electrical 
processing of the signal

Soma
 Life Cycle

CGP

AxoSynapse Branch
 Life Cycle

CGP

Figure 3: Life cycle of neuron, showing CGP pro-
grams for life cycles in Dendrite branch, Soma, and
Axosynapse branch with their corresponding inputs
and outputs.

Axosynapse
Weight Ajustment

CGP

Axosynapse
Weight

 Weights of neighbouring active dendrite 
branches

Updated 
Axosynaptic
Weight

Updates 
weights of 
neighbouring 
dendrite 
branches

Figure 4: Schematic drawing of weight processing
CGP program for axo-synaptic branches, showing
inputs and outputs.

creases in the numbers of neurons, dendrite branches and
axon branches, and for the growth and migration of den-
drite and axon branches. It consists of three chromosomes
that provide the life cycle programs for the dendrite branch,
the soma, and the axo-synapse branch.

Life Cycle of Dendrite Branch This chromosome con-
trols the life cycle of dendrite branches. Figure 3 shows the
inputs and outputs to the chromosome. Variation in resis-
tance of a dendrite branch is used to decide whether it will
grow, shrink, or stay at its current location.

The updated value of dendrite branch health is used to
decide whether to a branch produces offspring, dies, or re-
mains unchanged (but with an updated health value). An
offspring is a new branch at the same CGPCN grid point
connected to the same dendrite.

Life Cycle of Soma Figure 3 shows the inputs and out-
puts of the soma life cycle chromosome. This chromosome
evaluates the life cycle of the neuron. This chromosome
produces updated values of health and weight of the soma
as output. The updated value of health decides whether
the soma should produce offspring, should die or continue
without change.

Axo-Synaptic Branch Life Cycle Figure 3 shows the
inputs and outputs of the axosynaptic branch life cycle chro-
mosome. It takes as input the health and resistance of the
axon branch, and generates updated values as output.

The updated values of resistance are used to decide whether
the axon branch should grow, shrink, or stay at its current
location. The health of the axon branch decides whether the
branch will die, produce offspring, or merely continue with
an updated value of health.

4.1.3 Weight Processing
Weight processing is responsible for updating the weights

of axo-synaptic and dendrite branches. It consists of the
axo-synaptic branch weight processing chromosome. The
weight of axon and dendrite branches affect their capability
to transfer information efficiently. The weights are respon-
sible for modulating the signal. They affect almost all the
neural processes, either by virtue of being an input to a
chromosomal program, or as a factor in post processing of
signals.

Figure 4 shows the inputs and the outputs to the axo-
synaptic weight processing chromosome. The CGP program
encoded in this chromosome takes as input the weight val-
ues of the axo-synapse and the weight values of dendrite
branches from the same CGPCN grid square, and produces
updated weight values as output.

4.2 Inputs and Outputs
This section describes how inputs are applied to the over-

all network and outputs are obtained from the network.
Inputs are applied to the CGPCN through “virtual” axon
branches by using the axo-synaptic electrical processing chro-
mosome. These virtual branches are distributed in the net-
work in a similar way to the axon branches of neurons as
shown in figure 1. They take input from the environment
and transfer it through virtual axo-synapses without pro-
cessing it. When inputs are applied to the system, the pro-
gram encoded in the axo-synaptic electrical processing chro-
mosome is executed, and the resulting signal is transferred
to neighbouring active dendrite branches.

Similarly, the signals from the system are read out through
virtual dendrite branches. These virtual dendrite branches
are distributed across the network as shown in Figure 1.
These branches are updated by the axo-synaptic electrical
processing chromosome in the same way as other dendrite
branches. The output from this is taken without further
processing after every five cycles.

4.3 Fitness Calculation and Evolutionary Strat-
egy

The fitness of the agents is accumulated at the end of
every game using the following equation:

Fitness = A+200NK+100NM−200NOK−100NOM +NMOV

Where NK represents the number of kings, and NM rep-
resents number of men of the current player. NOK and
NOM represent the number of kings and men of the opposing
player. NMOV represents the total number of moves played.
A is 1000 for a win, and zero for a draw. To avoid spend-
ing much computational time assessing the abilities of poor
game playing agents we have chosen a maximum number
of moves. If this number of moves is reached before either
of the agents win the game, then A =0, and the number
of pieces and type of pieces decide the fitness value of the
agent.

The evolutionary strategy [1] utilized is of the form 1 +
λ, with λ set to 4 [16], i.e. one parent with 4 offspring (pop-
ulation size 5). The parent, or elite, is preserved unaltered,
whilst the offspring are generated by mutation of the parent.
The best chromosome is always promoted to the next gen-
eration, however, if two or more chromosomes achieve the
highest fitness then the newest (genetically) is always chosen
[8].

2172



5. THE GAME: CO-EVOLUTION OF TWO
AGENTS PLAYING CHECKERS

Each agent is provided with a CGPCN ’brain’, and plays
checkers against the other. Each agent’s population consists
of five genotypes. During every generation the genotype of
an agent is chosen from the best performing of five geno-
types. Each of the five first agent population members are
tested against the best performing second agent genotype
from the previous generation. Similarly each of the five sec-
ond agent population members are tested against the best
performing first agent genotype from the previous genera-
tion. The initial random network is the same for both the
first and second agent. It is the genotypes which grow a ma-
ture network from the initial randomly generated network.
The best first and second agent genotypes are selected as
the parents for the new populations and are promoted to the
next generation unaltered along with four offspring (muta-
tional variants of the best performing agents). The perfor-
mance of the agent is calculated only at the end of every
game. The CGPCN structure for the two agents develop a
lot during the game, while, of course, the genotype remains
the same, and is only changed from generation to genera-
tion. The initial CGPCN setup remains the same during
the course of evolution. So all the agents start with the
same initial random CGPCN structure. Thus any learning
behaviour that exists in an agent is obtained through the
interaction and repeated running of the seven chromosomes
in the game scenario.

The initial CGPCN structure starts with five neurons with
a random number of dendrites, one axon and a random num-
ber of dendrite and axon branches. These neurons are lo-
cated in a grid. The neurons are placed in close proximity to
each other so that they can more easily communicate with
each other.

When the experiment starts, the agent playing black takes
input from the board. This input is applied to its CGPCN
through virtual axosynapses. The CGPCN network is then
run for five cycles. During this process it updates the poten-
tials of the virtual dendrite branches acting as the output
of the network. These updated potentials are averaged, and
used to decide the direction of movement for the correspond-
ing piece. Each piece is allocated a virtual dendrite branch
in the CGPCN (see later). The potentials of these branches
are updated during CGPCN process. The updated values of
these potentials are used to decide which piece to move, un-
less there is a jump, which takes priority. For more than one
jump, the piece with highest potential makes the jump. The
same process is repeated for the opponent and the process
is repeated and continues until the game stops.

The game is stopped if either the CGPCN of an agent or
its opponent dies (i.e. all its neurons or neurites dies), or if
all its or opponent players are taken, or if the agent or its
opponent can not move anymore, or if the allotted number
of moves allowed for the game have been taken.

5.1 CGP Computational Network (CGPCN)
Setup

The CGPCN is arranged in the following manner for this
experiment. Each player CGPCN has neurons and branches
located in a 4x4 grid. Initial number of neurons is 5. Max-
imum number of dendrites is 5. Maximum number of den-
drite and axon branches is 15. Maximum branch statefactor

is 7. Maximum soma statefactor is 3. Mutation rate is 5%.
Maximum number of nodes per chromosome is 200. Maxi-
mum number of moves is 20 for each player.

5.2 Inputs and outputs of the System
The input is applied to both CGPCNs using virtual axo-

synapse branches. Input is in the form of board values,
which is an array of 32 elements, with each representing a
playable board square. Each of the 32 inputs represents one
of the following five different values depending on what is
on the square of the board. A zero value indicates an empty
square. A maximum value of 232 − 1 represents a king of
the player making the move. Three quarters of the maxi-
mum value represents an ordinary piece of the player making
the move. Half the maximum value represents an opposing
player’s piece. Quarter the maximum value represents an
opponent’s king. The board inputs are applied in pairs to
all the sixteen locations in the 4x4 CGPCN grid (i.e. two
virtual axo-synapse branches in every grid square).

Output is in two forms, one of the outputs is used to select
the piece to move and second is used to decide where that
piece should move. Each piece on the board has a virtual
dendrite branch in the CGPCN. All pieces are assigned a
unique ID, representing the CGPCN grid square where its
branch is located. Each of these branches has a potential,
which is updated during CGPCN processing. The values of
potentials determine the possibility of a piece to move, the
piece that has the highest potential will be the one that is
moved, however if any pieces are in a position to jump then
the piece with the highest potential of those will move. Note
that if the piece is a king and can jump then, according to the
rules of checkers, this takes priority. Once again if two pieces
are kings and each could jump the the king with the highest
potential makes the jumping move. In addition, there are
also five virtual dendrite branches distributed at random
locations in the CGPCN grid. The average value of these
branch potentials determine the direction of movement for
the piece. Whenever a piece is removed its dendrite branch
is removed from the CGPCN grid.

5.3 Results and Analysis
We believe that checkers represents a difficult problem.

The two agents each start with a few neurons with a ran-
dom number of dendrites and branches, and with random
connections. Evolution must first find a series of programs
that build a computational network that is capable of solv-
ing the task while maintaining a stable network (i.e. not
losing all the neurons or branches). Secondly, it must find a
way of processing the environmental signals and differenti-
ating among them. Thirdly, it must understand the spatial
layout of the board (positions of its players). Fourth it must
develop a memory or knowledge about the meaning of the
signals from the board, and fifth it should develop a mem-
ory of all it previous moves and whether they were beneficial
or deleterious. Finally it should understand the benefits of
making a king or jumping over. Over the generations the
agents learn from each other about favourable moves, this
learning is transferred through the genes from generation to
generation. Thus one would expect well evolved agent to
play much better than earlier ones.

To test whether more evolved agents were indeed playing
the game better, we did a number of experiments. We tested
a well evolved agents against less evolved agents. We found

2173



0 50 100 150 200 250 300
−2000

−1000

0

1000

2000

3000

F
itn

es
s 

A

0 50 100 150 200 250 300
−2000

−1000

0

1000

2000

3000

Generation

F
itn

es
s 

B

Figure 5: Variations in fitness of two agents over one
evolutionary run.

that the well evolved agent always beat the less evolved one,
in some of the cases it ends up in a draw, but in those cases
the well evolved agent ends up with more kings and pieces
than the less evolved agent. Table 1 shows the difference
in fitness of the agents at different generations and their
performance when playing each other.

Figure 5 shows the variation in the fitness of the two
agents over a particular evolutionary run, the graph show
a lot of variation from generation to generation. This is typ-
ical of co-evolution. In every generation agents try to beat
the best opponent from the last generation, if it wins its
fitness is increased, at the expense of the opponent. This
causes the frequent fluctuations.

6. CONCLUSION
We have described a neuron-inspired developmental ap-

proach to construct a new kind of computational neural
architectures. These control the actions of agents playing
checkers. We found that the neural structures controlling
the agents grow and change in response to their behaviour,
interactions with each other and the environment. The
evolved programs built neural structures from an initial small
random structure. The structures develop during a single
game, and allow them to learn and exhibit intelligent be-
haviour. We used a technique called Cartesian Genetic Pro-
gramming to encode and evolve seven computational func-
tions inspired by the biological neuron. In future work, we
plan to evaluate this approach in richer and more complex
environments. The eventual aim is to see if it is possible to
evolve a general capability for learning.

7. REFERENCES
[1] T. Back, F. Hoffmeister, and H. Schwefel. A survey of

evolution strategies. In Proceedings of the 4th

White Black White Fitness Black Fitness

1350 5 2148(8 men,1 king) -852
5 1350 -551 2049(2 kings,4 men)

1750 150 680(2 kings,1 man) 80(1 king)

150 1750 -234 1766(2 kings,1 man)

50 500 281(1 kings,1 man) 481(2 king,1 man)

500 50 2147(3 kings,5 men) -653
10 100 -221 1779(2 kings,3 men)

350 800 -259(3 men) 341 (6 men)

800 200 1441(2 kings,9 men) -1359(1 men)

150 800 -459(2 men) 541(1 kings,4 men)

Table 1: The number of generations used to evolve
agents and their fitnesses and performance when
they played each other

International Conference on Genetic Algorithms,Vol.
1802, Morgan Kaufmann, pages 2–9, 1991.

[2] P. Bentley. Digital Biology. Simon and Schuster, 2002.

[3] R. W. Dimand and M. A. Dimand. A History of
Game Theory: From the Beginnings to 1945,
volume 1. Routledge, 1996.

[4] D. Fogel. Blondie24: Playing at the Edge of AI.
Academic Press,London, UK, 2002.

[5] J. Holland. Emergence: from chaos to order. Oxford
University Press, 1998.

[6] G. Khan, J. Miller, and D. Halliday. Coevolution of
intelligent agents using cartesian genetic programming.
In Proc. GECCO, pages 269 – 276, 2007.

[7] S. Kumar and J. Bentley. On Growth, Form and
Computers. Academic Press, 2003.

[8] J. Miller, D. Job, and V. Vassilev. Principles in the
evolutionary design of digital circuits – part i. Journal
of Genetic Programming and Evolvable Machines,
1(2):259–288, 2000.

[9] J. F. Miller and P. Thomson. Cartesian genetic
programming. In Proc. EuroGP, volume 1802 of
LNCS, pages 121–132, 2000.

[10] J. F. Miller, P. Thomson, and T. C. Fogarty. Designing
electronic circuits using evolutionary algorithms.
arithmetic circuits: a case study. pages 105–131, 1997.

[11] J. v. Neumann. Zur theorie der gesellschaftsspiele.
Math. Annalen, 100:295–320, 1928.

[12] A. Samuel. Some studies in machine learning using the
game of checkers. IBM J. Res. Dev., 3(3):210–219,
1959.

[13] J. Schaeffer. One Jump Ahead: Challenging Human
Supremacy in Checkers. Springer, Berlin, 1996.

[14] J. Schaeffer and J. v. d. Herik. Chips Challenging
Champions. Elsevier, Amsterdam, 2002.

[15] C. Shannon. Programming a computer for playing
chess. Phil. Mag., 41:256–275, 1950.

[16] T. Yu and J. Miller. Neutrality and the evolvability of
boolean function landscape. In Proc. EuroGP, pages
204–217. Springer-Verlag, 2001.

2174


