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Abstract

One of the key areas in which evolvable hardware
has been shown to excel is in achieving robust
analogue and digital electronics. In this paper
this domain is investigated further by manipula-
tion of the digital abstraction. Some of the strict
requirements of digital gates are relaxed in or-
der to increase the complexity of the functional-
ity available to evolution in order to evolve fault
tolerant designs. Results from extrinsic evolu-
tion of a 2-by-2 bit multiplier, based on CMOS
technology under various noise and fault condi-
tions, illustrate the suitability of the messy gate
methodology used herein for evolution of a fault
tolerant design.

1 INTRODUCTION

Silicon is not a truly reliable technology. However, by us-
ing a digital abstraction we obtain a more robust platform
against signal variation and noise whilst sacrificing much
intrinsic complexity. That is, above and below the digital
thresholds we are not concerned with signal variations.

Each gate and its connections plays a crucial role in the
overall behaviour of a digital circuit. Unforeseen events
can easily prevent proper operation of a regular digital de-
sign. Why is this? The digital abstraction assumes that
the technology will always operate within the specifications
laid down by the abstraction mechanism and since silicon is
not a truly reliable technology, deviations may be expected.

A number of noteworthy efforts have already been con-
ducted within fault detection and repair based on the
principles of biological development. In the embryol-
ogy work conducted at York [OT99] and Ecole Polytech-
nique Fédérale de Lausanne (EPFL) [MSST00], experi-
ments have been conducted using FPGAs with extended

Configurable Logic Blocks (CLBs) to contain a complete
genotype of the circuit. Through repeated cell divisions, a
circuit develops from a single cell into a full-grown phe-
notype. An interesting approach was taken in [BOST00]
where principles of biological immune systems were
adopted to attain fault-tolerance. Work on achieving toler-
ance to temperature changes includes [TL00] and [SKZ01].

Inherent fault tolerance is present if the design is able to
continue its operation undisturbed by fault inducing events
without the need for explicit mechanisms for fault detec-
tion and recovery. This may be achieved by robust ways
of computation or by an underlying fault-detection and re-
pair from within the technology. The work of Haddow and
van Remortel [HvR01] considered possibilities for achiev-
ing fault detection and repair from within the technology
as well as more fault tolerant ways of distributing digi-
tal designs onto the technology based on the amorphous
computing concept [Aea99]. Hounsell and Arslan [HA01]
have developed a fault tolerant hardware platform for the
automated design of multiplier-less digital filters. Tyrrell
et al [THS01] have used evolutionary strategies to achieve
redundancy thus providing inherent fault tolerance in the
design.

The approach described herein uses the concept of messy
gates [MH01a]. The messy gate concept may be said to be
a fault tolerant methodology rather than fault detection and
repair methodology. This tolerance is a tolerance to a less
reliable technology. It may not only tolerate less than per-
fect gates but in fact uses evolution to exploit this messiness
i.e. non perfect digital signals. Other work which exploited
features of the technology includes the work of Thomp-
son [Tho96]. Here the focus was not so much on fault tol-
erance but more towards achieving unique solutions to dif-
ficult problems and, as such, illustrating the power of evo-
lution. Messy gates are able to operate in analogue voltage
levels that are outside the normal digital scope. In addi-
tion, the analogue outputs of the messy gates are allowed
to propagate through the circuit.



Circuit designs are evolved using messy gates as their com-
ponents. As in nature, evolution is not prone to designs
where every part is required for satisfactory behaviour, but
rather to distributed designs where no single point is cru-
cial. Fault tolerance emerges through the abstraction mech-
anism as its functionality is exploited by evolution.

Earlier work of Miller and Hartmann [MH01a, MH01b] on
the messy gates approach may be said to be a proof of con-
cept. That is, the model did not take into account any par-
ticular technology but more investigated the possibility of
exploiting non-perfect digital gates to achieve fault toler-
ance. This work showed promising results and, as such, the
model has been extended to a technology specific model.
This paper presents the new model, simulator and the re-
sults of experimentation.

The model for the messy gates and the simulator that was
developed are described in section 2. In section 3, the evo-
lutionary algorithm is explained. Section 4 describes the
experiments and section 5 gives a discussion of the results.
In section 6 we present some ideas for future work and sec-
tion 7 presents our conclusions.

2 MESSY GATES AND THE SIMULATOR
ENVIRONMENT

Introduced in [MH01a] and elaborated in [MH01b], messy
gates is an approach which removes some of the digital ab-
straction and investigates the impact on evolution of cir-
cuits using these gates to achieve fault tolerance. While
earlier work is based on an abstraction level not close to
a specific hardware technology, this paper introduces a
model of messy gates which is very close to one technol-
ogy, specifically Complementary Metal Oxide Semicon-
ductor (CMOS). The model is parameterised and can be
tuned to different semiconductor technologies.

The simulator is based on observations made during ana-
logue simulation of digital gates in Simulation Program
for Integrated Circuits Emphasis (SPICE). Each gate was
modelled at the transistor level including various error
sources. Figure 1 shows the model of a NOR gate
which was provided to the SPICE simulator. As shown,
the model incorporates three noise generators (FGEN1

through FGEN3), several capacitances (C1 through C3),
current leaks (R1 and R2), and output load (LOAD).
NAND, NOR, NOT, MUX and NMUX (multiplexor with
one input inverted) gates were simulated at analogue 5V
CMOS transistor level whilst being exposed to different
configurations of capacitances, resistances and noise. For
the purpose of the experiments herein, only the MUX and
NMUX gates were used.

A sigmoid function was used to approximate the fall and

rise behaviour of the digital gates. Sigmoid functions
for each gate type were individually tuned to approximate
behaviour shown in SPICE simulations. For instance, a
NOR gate was simulated in SPICE showing a behaviour
as shown in Figure 2. Using a sigmoid function this was
approximated in our model as shown in Figure 3. Approx-
imations were subject to some limitations due to the fact
that a look-up table replaced a full sigmoid function in or-
der to speed up simulations. The size of this table was lim-
ited to 64 KB, in order to allow it to fit into the first level
cache of most modern processors. It should be noted that
the smoothness displayed in Figure 3 is only the core part
of the gate model, and more noisy behaviour like the one in
Figure 2 is likely to be displayed as noise is added.

Figure 1: SPICE transistor level layout of NOR gate

0,
000,
100,
200,
300,
400,
500,
600,
700,
800,
901,
00

0,00

0,20

0,40

0,60

0,80

1,00

-0,10

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

Output

Input A

Input B

Figure 2: SPICE simulation of NOR gate

The current simulator focuses on internal faults of types
stuck-at errors, floating outputs and partly random output,
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Figure 3: Model approximation of NOR gate

in addition to supporting induced signal noise. Input or out-
put stuck-at errors cover the cases of short-circuit to power
or ground and certain cases of inter-signal short-circuits.
Floating output errors covers the case where the output is
completely random, while partly random output covers the
case where the output is correct for one logical value while
random for the other logical value e.g. logical 1 is rep-
resented as 1 whilst logical 0 is represented as a random
number from 0 to 1. The simulator uses a real number in-
ternal representation within the range 0 to 1, to represent
the CMOS voltage range of 0 to 5 volts.

The transistor layout used in SPICE simulations allows
analogue signals to propagate through gates and there is no
explicit mechanism for pulling the output signal to either
a completely high or low state e.g. a push-pull stage. As
shown in Figure 3, the sigmoid behaviour will allow prop-
agation of analogue signals and yet be biased towards the
digital endpoints of the analogue scale (the real numbers 0
and 1 in simulation). The model provides evolution with
the possibility to exploit this non-digital feature to achieve
more robustness in evolved designs.

The resulting gate model used in the simulator is illustrated
in Figure 4. E1, E2 and E3 generate one of the supported
errors (stuck-at, floating outputs or partly random output)
or let the signal propagate through without error. The prob-
ability of error is preset as a parameter, whilst the type of
error is random with equal probability for each of the four
possible faults. F is the sigmoid function approximated
to the real behaviour of the corresponding gate in SPICE.
Finally, the output noise N is superimposed on the signal
to approximate errors that are not explicitly a part of the

model e.g. thermal noise, radiation, power supply noise,
component variance and cross talk. The errors and noise of
this abstracted model is not directly related to the errors of
the transistor model, but are present to achieve a behaviour
similar to that shown by the transistor model. The simula-
tor currently supports feed-forward networks and realiza-
tion details such as routing and layout are ignored.
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Figure 4: Generic 2-input gate

3 EVOLUTIONARY ALGORITHM

The algorithm used is a (1+�) evolutionary strategy with
neutral genetic drift. That is, a generation consists of the
best individual from the former generation and mutations
of it. Neutral drift is obtained when in the case of equal
fitness amongst the best individuals, one not from the for-
mer generation is selected. The work of Vassilev and Miller
[VM00] illustrates the advantage of this approach.

The target solution is defined simply via its truth table and
the number of inputs and outputs. Under fitness evaluation,
every circuit is subject to the complete set of possible in-
puts and a selection of noise and fault vectors. The outputs
generated by the circuit are compared to the target solution
truth table and any analogue output values are clamped to
their closest digital value for comparability.

The fitness function used is expressed in Equation 1. A
circuit C (individual) is tested against the target truth table
(T ) a number of times (TPI) under different environments.
Noise and fault probabilities are used to generate the differ-
ent environmentsm for each test.

The average of all tests is computed to yield a penalty for
the number of incorrect output vectors. Another term (G c �
Gp) penalises the number of gates. Finally, these terms
are subtracted from the maximum obtainable fitness Max

to yield a fitness score in the range 0 to the total number of



nature label select type input A input B
input 0
input 1
input 2
input 3
gate 4 0 MUX 0 3
gate 5 2 MUX 2 0
gate 6 5 NMUX 0 1
gate 7 2 MUX 2 1
gate (o) 8 7 MUX 7 4
gate (o) 9 8 MUX 5 6
gate (o) 10 4 MUX 7 6
gate (o) 11 3 MUX 4 1

Figure 5: Example genotype of a 4 inputs, 4 outputs circuit

output vectors in the target truth table minus 1 e.g. 24�1 in
the case of the 2-by-2 bit multiplier. Thus, the range of the
fitness of the 2-by-2 bit multipliers described in section 4
is 0 to 15.

F =Max�

 P
TPI

n=1
diff(Cm; T )

TPI
+Gc �Gp

!
(1)

F Fitness of individual
Max Maximum obtainable fitness
TPI Test pr. individual
diff() Number of incorrect output vectors
Cm Circuit in environmentm
T Target truth table
Gc Number of gates used
Gp Penalty pr. gate used

An example of the genotype used to represent a circuit is
shown in Figure 5. The connections of this specific geno-
type can be seen in Figure 7. Connections refer to labels of
either the inputs of the circuit (0 to 3 in the example) or to
the output of one of the gates in the circuit (4 to 11 in the
example). The last gates in the genotype representation are
considered to be connected to the external outputs of the
circuit (8 to 11 in the example). Only feed-forward con-
nections are allowed. The genotype uses MUX and NMUX
(multiplexor with one input inverted) and as such, each gate
has three inputs (select, input A and input B).

Mutations are done at gate level. If a gate is mutated, one
of its inputs is remapped or its type is changed to a random
type within the predefined set of gate types. The gate types
available to evolution are predefined. The simulator is not
limited to the gates described in section 2, but each new
gate requires handcrafted tuning of parameters.

4 PERFORMED EXPERIMENTS

The focus of these experiments is to discover the influence
of noise and gate failures on evolution of messy circuits.
2-by-2 bit multipliers were evolved using the algorithm
described in section 3 and the model and simulator envi-
ronment defined in section 2. Only gates of type MUX
and multiplexors with one input inverted, NMUX, were
made available to evolution to maintain comparability with
[MH01a, MH01b].

Five sets of experiments were carried out labeled A to E
in Table 1. The noise percentage signifies the amount of
noise relative to full signal strength that was superimposed
at each gate output. Noise is implemented as a random
value within this range. Error probability is the chance of
any given gate failing i.e. being subject to one of the errors
explained in section 2.

All experiments used a gate mutation probability of 15%,
population size of 30 individuals and a maximum gate
count of 9. Termination of each run occurred when an indi-
vidual avoided bit errors at the outputs and its size was less
than 10 gates.

A noteworthy fact is that each circuit is evaluated ten times
under different noise and error conditions. Each of these
evaluations gives rise to a fitness value. Fitness for this cir-
cuit (individual) is an average of these fitness values. This
means that an individual needs to be tolerant to more than
one specific configuration of faults and noise and exhibit an
overall tolerance to the environmental settings in order for
it to survive the selection process.

EXPERIMENT NOISE ERROR PROB.

A 10% 0%
B 30% 0%
C 0% 10%
D 0% 30%
E 35% 10%

Table 1: The experimental set of noise and error probabili-
ties

5 RESULTS AND EVALUATIONS

The evolutionary system successfully evolved circuits able
to perform a 2-by-2 bit multiplication in all the specified
environments. Figure 6 illustrates how the average of the
most fit individual for experiments B and E grow towards
100% fitness (15). As expected, the rougher environment
in experiment E made it harder to obtain better fitness when
compared to experiment B.
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Figure 6: Best fitness individuals averaged over several
runs

An example of an evolved multiplier from experiment A is
illustrated in Figure 7. The genotype of this specific multi-
plier is the one shown earlier in Figure 5.
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Figure 7: Example of evolved multiplier

As seen in Figure 6 and 8 the number of generations re-
quired before a correct individual was evolved increased
as noise and error probability got more severe. Experi-
ments A, B and C took on average below 2000 generations.
Experiment E required slightly more computational labour,
around 3000 generations. This may be said to be due to
the combination of severe noise and substantial error prob-
ability. Experiment D clearly separates from the other ex-
periments. The gate error probability presented a difficult
design task. However, the fact that evolution was able to
create such a fault tolerant architecture is quite an achieve-

ment. The computational time required is not really that
severe, on average the performance is about 100 genera-
tions per second.
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Figure 8: Generations used before termination

In the experiments performed here evolution was not given
much room to play with in terms of gates. The maximum
number of gates was set to nine. Due to this maximum
only a slight variation in the number of gates was seen, as
shown in Figure 9. Also, during the experiments, Gp in
equation 1 was so low (0.001) that the output correctness
always had highest priority. In experiment D the average
number of gates used is below the general average. The
reason for this is that evolution avoids extra gates, as each
gate increases the chance of gate failure. In experiment E,
evolution may be assumed to perform similarly where the
rough environment in terms of both noise and gate errors
forces a bias towards small circuits.
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6 FUTURE WORK

Several extensions of the work described are planned, pri-
marily exploiting the speed of the simulator in order to
run extensive numbers of experiments. Such experiments
would include allowing evolution to use more gates to in-
crease the genetic variation, evolving with more common
type of logic gates like NAND and NOR, evolving circuits
with different functionality and exploring the suitability
of different evolutionary algorithms. Extensive investiga-
tion of the evolved circuits true fault tolerance compared to
other approaches would also be advantageous. In addition,
verification of the circuits on both digital and analogue lev-
els is important.

A feature of the developed simulator is that its states and
signals are fully observable. Combining this with the in-
creased freedom of the semi digital environment may yield
results that exploit complex intrinsic silicon functionality
not available in a traditional evolutionary digital design
environment. Such exploitation of intrinsic features have
shown stunning results e.g. in [Tho95, Tho96], but the fea-
tures of such circuits have been hard or impossible to ob-
serve and understand [Lay98]. A goal of our project is to
move into hardware implementation with new knowledge
on how to exploit the intrinsic properties of the underlying
technology.

7 CONCLUSIONS

In this work a simulator has been developed that takes the
messy gates approach much closer to real electronic hard-
ware. In this simulated environment evolution is able to
perform circuit design tasks that present a serious chal-
lenge. Within certain limits, noise influence and fault prob-
ability does not even seem to affect evolution. In fact, exter-
nal influences that human engineers view as destructive and
problematic may be exploited by evolution e.g. increasing
the noise may in fact decrease the number of generations
needed to evolve a complete circuit. When faults and noise
influence are increased to severe levels, evolution seems to
find it harder to find solutions. Still, it does in fact manage
to do so and very quickly when compared to a human de-
signer. Just imagine the design task of creating a 2-by-2 bit
multiplier using eight or nine multiplexors in an environ-
ment where almost one third of the gates fail on average.

References

[Aea99] H. Abelson et al. Amorphous Computing.
Technical report, Massachusetts Institute of
Technology, 1999.

[BOST00] Daryl Bradley, Cesar Ortega-Sanchez, and
Andy M. Tyrrell. Embryonics + immunotron-
ics: A bio-inspired approach to fault-tolerance.
In J. Lohn, A. Stoica, D. Keymeulen, and
S. Colombano, editors, Proc. The Second
NASA/DoD Workshop on Evolvable Hardware,
EH 2000, pp 215–224. IEEE Computer Soci-
ety, 2000.

[HA01] Ben I. Hounsell and Tughrul Arslan. Evolu-
tionary Design and Adaptation of Digital Fil-
ters Within an Embedded Fault Tolerant Hard-
ware Platform. In D. Keymeulen, A. Stoica,
J. Lohn, and R. S. Zebulum, editors, Proc.
The Third NASA/DoD Workshop on Evolvable
Hardware, EH 2001, pp 127–135. IEEE Com-
puter Society, 2001.

[HvR01] Pauline C. Haddow and Piet van Remortel.
From here to there: Future robust EHW
technologies for large digital designs. In
D. Keymeulen, A. Stoica, J. Lohn, and R. S.
Zebulum, editors, Proc. The Third NASA/DoD
Workshop on Evolvable Hardware, EH 2001,
pp 232–239. IEEE Computer Society, 2001.

[Lay98] P. Layzell. A New Research Tool for Intrinsic
Hardware Evolution. In 2nd International Con-
ference on Evolvable Systems (ICES98), Lec-
ture Notes in Computer Science, pp 47–56.
Springer, 1998.

[MH01a] J. Miller and M. Hartmann. Evolving Messy
Gates for Fault-Tolerance: Some preliminary
Findings. In D. Keymeulen, A. Stoica, J. Lohn,
and R. S. Zebulum, editors, Proc. The Third
NASA/DoD Workshop on Evolvable Hardware,
EH 2001, pp 116–123. IEEE Computer Soci-
ety, 2001.

[MH01b] J. Miller and M. Hartmann. Untidy Evolution:
Evolving Messy Gates for Fault-Tolerance. In
Y. Liu et al, editor, Evolvable Systems: From
Biology to Hardware. Fourth Int. Conf., ICES
2001, volume 2210 of Lecture Notes in Com-
puter Science, pp 14–25. Springer, 2001.

[MSST00] Daniel Mange, Moshe Sipper, André Stauffer,
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