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Abstract. Evolutionary algorithms have been widely used to optimise
or design search algorithms, however, very few have considered evolv-
ing iterative algorithms. In this paper, we introduce a novel extension
to Cartesian Genetic Programming that allows it to encode iterative al-
gorithms. We apply this technique to the Traveling Salesman Problem
to produce human-readable solvers which can be then be independently
implemented. Our experimental results demonstrate that the evolved
solvers scale well to much larger TSP instances than those used for train-
ing.

1 Introduction

Designing effective search algorithms for difficult problems has long been an
intensive field of study in computer science [1]. Evolutionary algorithms have
been used to optimise or design search algorithms and it is typical for such
algorithms to operate on a human-designed template in which new operations
are generated at fixed points in the template. Very few have evolved loop-based
control flow and attempted to answer John Koza’s question:“Is it possible to
automate the decision about [...] the particular sequence of iterative steps in
a computer program?” [2]. Such control flow can be implemented either via
iteration or recursion. Recursive approaches to various problems of program
induction have been presented in Yu and Clack [3] and Alexander [4] but we are
not aware of any direct applications to search problems.

In this paper, we introduce a novel and extended form of a well-known graph-
based form of Genetic Programming, Cartesian Genetic Programming (CGP), to
encode iterative algorithms. The original motivation for using hyper-heuristics
is that they do not require skilled practitioners. The use of CGP is significant in
this regard, since it doesn’t require knowledge of specialized bloat-handling tech-
niques. We apply this technique to the well-known Traveling Salesman Problem
(TSP), a problem domain which has been extensively studied in mathematics
and computer science and is often used to benchmark new techniques. Various
search algorithms such as Iterative Local Search, Memetic Algorithms, Parti-
cle Swarm Optimization, Ant Colony algorithms and other novel metaheuristics
have solved a wide variety of TSP benchmark instances that have often less
than 2000 cities[6–8]. We use iterative CGP to generate new TSP algorithms:



the quality of an algorithm during the evolution process is determined by a small
training set of TSP instances ranging between 200 and 800 cities. Subsequently
algorithms are validated on larger unseen instances varying in level of complex-
ity. The easiest instances have 30 cities but the most challenging contain just
under 25,000 cities. The contributions of the work presented here are three-fold:

1. Previously CGP has encoded as a data-flow diagram, in which information
flows through the graph from inputs to outputs [9]. For this work, CGP has
been adapted to provide a flowchart which represents an iterative algorithm
using “Decision”, “Process” and “Terminal” elements.

2. Both instruction ordering and iterative control flow are evolved: groups of
instructions can be repeated. The resulting algorithms find good solutions
to unseen TSP instances.

3. CGP is used to generate hybrid search algorithms using combinations of
local search and binary crossover. We evolve human-readable algorithms
that can reach optimal TSP solutions and can be directly translated into
other programming languages.

2 Optimisation of algorithms

The goal is to improve some aspect of an algorithm in order to solve problems
more efficiently or with fewer resources. It is useful to distinguish here between
two distinct search spaces: we use the term problem solutions to refer to elements
of the underlying problem space (e.g. permutations in the case of the TSP) prob-
lem and the algorithm solution to the generated algorithms. Early approaches
in this area have been referred to as “automatic programming systems” [2]. The
problem solutions are obtained using a solver generated by a technique such as
Genetic Programming (GP). Research in this area [2, 10] has largely focused on
results in terms of the performance on the underlying search problem, rather
than human-readability of the algorithms themselves. More recently, a variety
of search methods have been used to automatically configure algorithms via pa-
rameter optimization [11, 12]. The latest approaches in this area are increasingly
general (e.g. [13, 14]), allowing entire component configurations to be treated as
a parameter hierarchy. However, parameter tuning is still currently a rather lim-
ited way to optimise an algorithm. The evolution of iterative control flow with
CGP offers a more general approach and additionally provides human-readable
output without the need for explicit parsimony pressure to combat expression
bloat.

A graph-based form of Genetic Programming (GP) has automated machine
code with basic loops. This technique was promising, but it has not yet been
applied to higher level programming languages [5].

The generation of search algorithms can be considered within the context of
hyper-heuristics, which are defined as “a search method or learning mechanism
for selecting or generating heuristics to solve computational search problems”
[15]. Hyper-heuristics can be selective or generative. The popular conception of
selective hyper-heuristics is exemplified by the Hyflex framework, in which the



selection is performed (via an opaque domain barrier [15]) from a collection
of pre-existing operators (heuristics). There are number of alternative hyper-
heuristic frameworks to Hyflex (e.g. [16, 17]), including selective frameworks
with a less-restrictive notion of the domain barrier [18, 19]. In contrast to the se-
lective approach, generative hyper-heuristics create new operators [20] and tend
to use nature-inspired mechanisms (such as Learning Classifier Systems or GP)
to discover better quality algorithms. This can result in algorithms capable of
addressing an entire class of problems [21]. What both approaches have in com-
mon is to combine human-designed search components in new ways with the goal
of outperforming any individual component. A detailed review of the state-of-art
in hyper-heuristics can be found [15, 22]. Ryser-Welch et al [23] and Ross [24]
complement these reviews by focusing specifically on hyper-heuristic frameworks.

The automated design of sizeable algorithms without any external help is
beyond the state-of-the art. Suitably expressive algorithms may never termi-
nate or have over-long computations. It is therefore useful to consider an algo-
rithm search-space as consisting or both feasible and infeasible algorithms [2].
When algorithm design is automated, these unwanted occurrences are usually
prevented via some forms of constraint. For example, [25–28, 13] restrict the
structure of an algorithm to prevent unfeasible sequences being discovered. Syn-
tactic rules control the pattern of the primitives that are combined to form the
algorithm-solutions. The body of a loop, the initialisation step, the update step,
and sometimes the termination criteria are influenced by evolution. For instance,
[29] evolves the body of the loop of ant algorithms using Grammatical Evolu-
tion; these algorithms are human readable and strictly restricted to the syntactic
rules. Although some good results have been obtained from many of these tech-
niques, the resulting algorithms can be very challenging to understand. In some
cases, the chosen algorithm representation (e.g. GP tree) can cause bloat dur-
ing the evolution, resulting in very large complex algorithms. Other algorithm
generation schemes do not express all three elements of a looping construct or
restrict the algorithm-solutions to a limited collection of primitives. In the next
section, we describe how an extension of CGP can take advantages of proper-
ties of this graph-based GP, to relax strict syntactic rules to produce compact
iterative algorithms.

3 Iterative Cartesian Genetic Programming

We describe an extension of CGP to the generation of iterative algorithms. In
contrast to ‘traditional’ GP, which operates on expression trees, CGP uses a
directed acyclic graph. An integer-based encoding scheme is used to define a
two-dimensional grid, representing the adjacency matrix of a set of user-defined
nodes. A characteristic of CGP is that it encodes both active and inactive nodes.
Inactive nodes are nodes that are not on any paths connecting inputs to outputs;
in Fig. 1 the output connects to node 4, but node 5 is inactive (shaded in
gray). Nodes may be activated or deactivated during evolution. Each node has



a function gene indexing a primitive operation in a user-specified look-up table.
Nodes are connected in a feed-forward manner from either a previous node or a
program input, using at least one node input. The output genes can connect to
any previous nodes or program inputs. The identification of all the active nodes
starts from the nodes pointed to by the output genes and continues until an input
is reached. All the active nodes are then processed from left to right. In Fig. 1,
the decoding step identifies the active nodes 1,2,3 and 4; these are executed in
ascending order (i.e. 1,2,3 and 4).The CGP-graph has a fixed length, but the
number of active nodes can be anything from zero to the number of nodes (see
Fig. 1). Unlike other Genetic Programming techniques, CGP has been shown
not to bloat [30, 31].

Fig. 1. This CGP graph encodes an algorithm made of 4 primitives, with 1 input and
1 output. All these active nodes (in white) constitute the “process” elements of the
flowchart.

A directed graph can fully encode an iterative program: we call this an iter-
ative CGP graph. This allows a cycle to be formed so that loops are possible.
The stopping criterion, the iterative update step and the body of the loop are
all alterable by evolution. To accomplish this it is necessary for every node to
have at least four different types of genes:

Feed-forward connections are standard feed-forward CGP connection genes.
They connect the input to the current node with either a previous node or
a program input. We refer to these nodes as process nodes as they represent
a process element of the flowchart.

Branching connections can point to a previous node, a program input, itself,
or a suitable subsequent node. They are connection genes which determine
the boundaries of the body of a loop and split a CGP graph into smaller
sub-sequences. The first operation in the sub-sequence is the operation de-
termined by the function gene of the current node. The last operation in the
sub-sequence is the operation defined by the node pointed to by the branch-
ing gene of the current node. In these cases we refer to the current node as
a decision node by analogy with a node in a flowchart which represents a
“decision” element.



Function genes are as in standard CGP and encode a primitive operation.
Their values correspond with a function look-up table.

Condition genes represent the stopping criteria of loops. A condition look-up
table provides a set of Boolean primitives, these indicate whether a loop
exits (and control subsequently moves to the next node following the last
loop node) or continues to execute the next node inside the loop.

Fig. 2. An iterative CGP graph encodes an algorithm made of 8 primitives starting at
node 1 and ending at node 10. Nodes no 4, 5 and 11 are non-coding genes, these are
shaded in gray.

The distinction between decision and process nodes plays an important role
in the decoding process of an iterative CGP graph. First all the active nodes are
identified (by working backwards from the outputs), then the decision nodes are
placed so that branching can happen during the decoding process; the index of
the decision node is inserted after the last active node of the body of the loop.
For example in fig. 2, all the active nodes are executed in the following order:
1,2,3,6,7,2,8, 1,9,10. Also it is assumed that upon the second call of node 1,
condition no 2 is also met, causing program execution to move to the next node
(9) after the loop terminates at node (8).

1. When an iterative CGP graph does not encode any loops the value of any
branching gene is free to point to any nodes and program inputs.

2. For any nodes inside an existing loop, their branching genes can only connect
to node with a higher index that is inside the current loop or any previous
nodes and program inputs. In fig. 2, the branching gene of nodes 3, 4, 5, and
6 can be valid if its value is lower than the index of the node. It can also
point to the right to a node with an index lower than 7.

3. For any nodes outside an existing loop, their branching genes can connect
to a node that is outside any existing loops. A valid value for the branching
gene of node 1 can only point to the input or nodes 9, 10 or 11

CGP generally uses a (1+λ) evolutionary strategy (this is shown in Algo-
rithm 1). Either point or probabilistic mutation is traditionally used, crossover
is not. If an offspring has an equal or better fitness than the parent it is promoted
to the next generation [9]. Two basic grammatical rules ensure that either only



Algorithm 1 The (µ+ λ) evolutionary strategy used by both versions of CGP.
Often there is one parent (µ) and four offspring (λ)

1: Randomly generate individual i
2: Select the fittest individual, which is promoted as the parent (algorithm)
3: while solution is not found or the generation limit is not reached do
4: Mutate the parent to generate offspring
5: Generate the fittest algorithm using the following rules:
6: if offspring has a better or equal fitness than the parent then
7: offspring is chosen as fittest
8: else
9: The parent remains the fittest

10: end if
11: end while

nested loops are created or new loops do not overlap. This is ensured during the
initialization of the iterative CGP population and the mutation of parents to
produce new iterative CGP offspring.

4 Discovery of Iterative TSP solvers

The goal of these experiments is to gain insight into how hybrid metaheuris-
tics can be discovered with iterative CGP. We ran our generated algorithms
on the TSP instances from well-known benchmarks1. The settings of Iterative
CGP for the all the tests are given in Table 4. Our proposed method evolves
merely a sequence of heuristics, but repeated sub-sequences (or loops). At the
end of this process, a generated algorithm can then be extracted, and if desired,
re-coded in some conventional programming language. Subsequently, the gener-
ated algorithms are evaluated in an independent process using an unseen test.
The upper-level process is problem-domain independent and the specialised TSP
heuristics used in the lower-layer are described in the next sub-section.

4.1 The Travelling Salesman Problem

This combinatorial problem seeks the shortest possible route that visits each
of a list of cities exactly once and returns to the first city, i.e. a Hamiltonian
cycle on n cities. A route is are referred to as a tour and is typically represented
as a permutation on n elements. The problem is naturally represented with a
complete weighted graph G = (V,E). Each edge of E defines the link connecting
the cities and their weight indicates the distance between two cities u and v;
these are retrieved by the distance function d(u, v). The length of a tour is given

1 d1291, u2152, usa23505 and d18512 are benchmarks from the well-known TSPLIB.
The remaining instances are benchmarks from real-life geographical data ; these
are wi29, dj38, qa194, zi929, ca4663, ym7663, ja9874, gr9882, sw24978. All these
instances can be found at http://www.math.uwaterloo.ca/tsp/world/countries.html
and http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html



Table 1. Experimental parameters for Iterative CGP

Parameter Value

Length (no of nodes) 300
Levels-back (no of nodes) 100
Levels-forward (no of nodes) 100
Program inputs 1
Program outputs 1
µ + λ 1 + 1
Mutation Rate 0.10
Generations 1500

by the sum of its edge weights. For training purposes, we wish to combine the
results across multiple problem instances of different sizes, so we therefore use
the popular normalized measure of relative error as the fitness value of a TSP
solution. This uses the best tour length that is known a priori, using the formula
(tourlength− knownoptimum)/ knownoptimum.

A wide variety of TSP-specific operators have been examined in the liter-
ature. Lin-Kernighan heuristics are the most studied methods for solving this
problem effectively. In these, k edges are deleted and subsequently re-assembled
to construct the sub-paths of a new tour with a lower minimum weight [32,
33]. Traditionally those are often referred as k-opt heuristics. For example, when
k = 2, edges between two pairs of cities are reconnected in a different way to
obtain a new shorter tour. Solutions obtained from genetic operators (e.g. PMX,
as below) can be further improved by local search [6]. Operators given below
include those taken from recent work which merged a local search operator with
genetic search [7], along with well-known crossover and mutation operators. Ta-
ble 2 shows all the primitives we will be using for our experiments.

– Order Based Crossover (OX) chooses a subtour in one parent and im-
poses the relative order of the cities of the other parent [34].

– Partially-Mapped Crossover (PMX) copies an arbitrary chosen subtour
from the first parent into the second parent, before applying minimal changes
to construct a valid tour [35, 36].

– Voting Recombination Crossover (VR) uses a randomized Boolean vot-
ing mechanism to decide from which parents each city is copied from [37].

– Subtour-Exchange Crossover (SEC) preserves randomly selected sub-
tours from both parents to construct one new offspring [38].

– Edge-Assembly Crossover (EAX) assembles sub-tours together by build-
ing intermediary permutations. Each of these permutation are repeatedly
minimised [39]

– Stem-and-cycle ejection Crossover (SCX) unusually asexually repro-
duces before improving the child solution using a “Stem-And-Cycle” Local
Search approach [7].

– Insertion Mutation (IM) moves a randomly chosen city in a tour to
randomly selected place [40].

– Exchange Mutation (EM) swaps two randomly selected cities [41].



– Scramble Mutation (SM) rearranges a random subtour of cities [34].
Hyflex applies this mutation operator on a subtour and on the whole tour.

– Simple Inversion Mutation (SIM) implements a 2-opt Lin-Kernighan
heuristic.

– 3-point Inverstion Mutation (3IM) implements a 3-opt heuristic [7].

4.2 Automatic Design of hybrid metaheuristics

In our experiments, operators provided by the Hyflex cross-domain hyper-heuristic
framework23 were chosen (see Table 2) as described in previous research [42]. The
parameters for our generated metaheuristic were set to 2 offspring, 2 parents,
and a maximum of 500 evaluations. The search depth for local search controls
the number of iterations used in a local search operators; following preliminary
experiments, it was set to 0.89. The intensity of mutation (which defines the
numbers of cities shuffled in a permutation) was similarly set to 0.8. These stan-
dard parameters tune the performance in general of local searches and mutation
operators for any problem domain provided in Hyflex. These parameters are
standard choices for the Hyflex system.

Table 2. Function set: List of TSP
heuristics used as primitives.

Index TSP heuristics

0 InsertionMutation()
1 ExchangeMutation()
2 ScrambleWholeTourMutation()
3 ScambleSubtourMutation()
4 SimpleInversionMutation()
6 2-OptLocalSearch()
7 Best2-OptLocalSearch()
8 3-OptLocalSearch()
9 OrderBasedCrossover()

10 PartiallyMapCrossOver()
11 VotingRecombinationCrossOver()
12 SubtourExchangeCrossover()
13 ReplaceLeastFit()

SelectParents()
15 RestartPopulation()

Table 3. Condition set: Boolean primitives
chosen for the stopping criterion.

Index TSP heuristics

1 Number of evaluations > 0
2 The evaluations fall in the first

half of the evolution
3 The evaluations fall in the second

half of the evolution
4 Number of evaluations > 0 or

no improved neighbouring solutions
are available

Tables 2 and 3 provide the heuristics and termination criterion for the gener-
ated TSP solvers. For Conditions 2 and 3, the evolution is split into two stages:
each phase uses half the available evaluations Condition 4 stops the search when
all the evaluations have been used or no shorter tour has been found in the last
50 generations.

2 http://www.asap.cs.nott.ac.uk/external/chesc2011/
3 http://www.hyflex.org/chesc2014/



A predefined template (Algorithm 2) guarantees that the generated algo-
rithm initializes and evaluates a population of permutations, before selecting
parents (lines 1 to 3 of algorithm 2). The code in lines 4 to 21 execute the it-
erative algorithm defined by the active nodes of an iterative CGP graph. The
last line enforces that shorter tours are promoted in the population before the
algorithm ends its run (see line 22 of Algorithm 2). The remaining lines apply
the heuristics of the active process and branching nodes (see lines 4 and 23).
The ‘goto’ statements can either jump to the start of a loop, the next heuristics
(if there is one) or the first when the stopping criterion is met, or to the first
heuristic of the metaheuristic.

Algorithm 2 Template for a hybrid meta-heuristic, with main structure (line
4 to 21) being evolved by an Hyper-Heuristic algorithm.

1: p0 ← GenerateInitialSolution();
2: p0 ← EvaluatePopulation();
3: t← SelectParents();
4: {Start of code generated by Iterative CGP}
5: goto the first active node
6: while Not the end of of evolved sequence of heuristics do
7: if The current node is a process node then
8: Apply the heuristic on t or p
9: goto the next active node

10: else
11: if the current node is a decision node and the last node a loop then
12: goto the first node of the loop
13: end if
14: StoppingCriterion← apply condition of the currentNode
15: if StoppingCriterion is false then
16: Apply the heuristic on the t or p
17: Go to the next active node
18: else
19: Go to the first node after the loop
20: end if
21: end if
22: end while
23: {End of code generated by Iterative CGP}
24: p← replaceLeastF it(t, p)

The testing phase was performed on TSP lib instances pr299, pr439 and
rat7834 having 299, 439 and 783 cities respectively. It is well-known that hyper-
heuristic evaluation is computationally expensive, so this small subset of in-
stances was chosen for their diverse clustering of cities. The fitness measure used
for generated solvers during the training phase is obtained by averaging the rel-
ative error values obtained for these instances; each run had a budget of 500

4 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/



evaluations. The fitness measure for testing is the relative error of the instance
under test.

5 Experimental results

Algorithms 3 and 4 show the best iterative algorithms evolved by iterative CGP.
As discussed above, the first three lines and the last instruction of these al-
gorithms are part of the template described in Algorithm 2. The remaining
instructions of the algorithms were generated during the decoding phase of the
iterative CGP graphs.

Algorithm 3 resembles a memetic algorithm; evolution has re-discovered
a similar algorithm to the most effective sequential algorithm evolved in our
previous research [42]. In fact, lines 6 to 8 cancel out the effect of restarting
the population p, if no shorter tour has been found in 50 generations, then the
population is initialized again. However the newly-created TSP solutions are
replaced immediately by the offspring (t); if and only if the length of their tour
is shorter than the new generated individuals in population p.

Algorithm 4 applies two loops that are carried out during the first half of the
evolution and fewer evaluations are required. The first loop can be perceived as
redundant, but its purpose is to execute only once two Lin-Kernighan operators;
one before and one after searching more thoroughly. This occurs in a nested
loop, constructed with the Best2-OptLocalSearch() to reduce the length of the
tour, before applying ExchangeMutation heuristic. This heuristic should prevent
the 3-opt-LocalSearch() finding no available neighbouring solutions and then
finding the same local optima again. These new offspring then replace the least
fit individuals in the population p.

Algorithms 3 and 4 were translated from their iterative CGP graph form
and coded as TSP solvers in the programming language JavaTM. The same
primitives were retained, but a different set of benchmarks was used for testing.
As observed above, hyper-heuristics are notoriously computationally expensive
and a representative subset (having different distributions of cities) was chosen
so to allow the experiments to be performed within a reasonable time. After some
initial experiments, we set our number of evaluations to 6000, so that the search
can be performed in a reasonable amount of time. We are aware the search is
likely to be short, however, it would be just a matter of increasing the evaluations
to solve more instances. For direct comparison, the best performing sequential
TSP solver obtained from previous research [42] and the memetic algorithm due
to Özcan [43] were also coded in Java. Both algorithms apply the same set of
operators, with statistical comparison provided in Table 4, which gives the mean
of the best obtained tour lengths over 30 runs and the mean relative error (and
its standard deviation) from the best-known tour length.

We can see in Fig. 3 the evolution has constructed algorithms that enhance
the strength and ameliorate the weaknesses of the heuristics and conditions listed
in tables 2 and 3. Both algorithms start their search with 3-Opt-LocalSearch, to
reduce dramatically the length of the tours generated during the initialization



process. In Fig. 3, the search descends sharply from around a relative error
approximately around 0.20 from the known minimum to a relative error around
0.11 from generation 0 to 1. Hence it appears that evolution has rediscovered
some elements of the template applied in Ryser-Welch et al. [42].

Algorithm 3 This algorithm is the outcome of applying algorithm 2 on the
iterative graph in fig 2

1: p0 ← GenerateInitialSolution();
2: p0 ← EvaluatePopulation();
3: t← SelectParents();
4: {Start of code generated by Iterative CGP}
5: while Number of evaluation left > 0 do
6: t← 3-OptLocalSearch(t)
7: p← restart population
8: p← replaceLeastFit(t,p)
9: t← SelectParents()

10: t← ExchangeMutation(t)
11: end while
12: {End of code generated by Iterative CGP}
13: p← replaceLeastF it(t, p)

Algorithm 4 This algorithm is the outcome of applying algorithm 2 on the
iterative graph in fig 2

1: p0 ← GenerateInitialSolution();
2: p0 ← EvaluatePopulation();
3: t← SelectParents();
4: {Start of code generated by Iterative CGP}
5: while The evaluations fall in the first half of the evolution (node 1) do
6: t← 3-OptLocalSearch(t) (node 1)
7: while The evaluations fall in the first half of the evolution (node 2) do
8: t← Best2-OptionLocalSearch(t) (node 2)
9: t← ExchangeMutation(t) (node 3)

10: t← 3-OptionLocalSearch(t) (node 4)
11: p← replaceLeastFit(t, p) (node 5)
12: t← SelectParents() (node 5);
13: end while
14: t← SimpleInversionMutation(t) (node 6)
15: end while
16: t← 3-OptionLocalSearch(t) (node 7)
17: t← OrderBaseCrossover(t) (node 8)
18: {End of code generated by Iterative CGP}
19: p← replaceLeastF it(t, p)



Fig. 3. A comparison of the four algorithms during the search for an optimum tour for
the benchmark D1219

The iterative and the sequential algorithms achieved the best average fitness
overall with a small standard deviation. For most benchmarks, the iterative al-
gorithm scales well, finding good solutions to some benchmarks larger than the
instances used during the training phase. Algorithm 3 has found the best solu-
tions for the instances d1291, ym7663, usa13509 and sw24978; these instances
are particularly hard to solve. Algorithm 4 uses many fewer evaluations; the
termination criterion stop the loop when half of the evaluations have been used.
The algorithm has found better tours than the sequential algorithms for the TSP
instances d1291, zi929, ja9874 and usa13509.

We applied the Mann-Whitney U nonparametric test (for p = 0.05) to all
pairs of algorithms, the results of which are in Table 5. The symbol = indicates
that there is no significant difference between (the results of) Alg A and Alg B,
> denotes that Alg A is significantly better than Alg B and < that Alg A is sig-
nificantly worse than Alg B. In general, Algorithms 3 and 4 have found better or
similar tours than related previous work [42]. Our approach has generated some
iterative metaheuristics that have higher scalability than the best performing
sequential TSP solver obtained from this previous research.



Table 4. Mean values of TSP solutions on 30 independent runs. The optimum value
was either found by using Concorde or Lin-Kernighan

TSP Known Iterative Iterative Ryser- Ozcan
Instance Optimum 5 Alg no 3 Alg no 4 Welch 2015 2004

wi29 27,603 27,603 27,603 27,603 30,704
relative error 0.000 0.000 0.000 0.001

standard dev. 0.000 0.000 0.000 0.068
dj38 6,656 6,656 6,656 6,656 7,044

relative error 0.000 0.000 0.000 0.002
standard dev. 0.000 0.000 0.000 0.112

qa194 9,352 9,369 9,560 9,378 9,361
relative error 0.002 0.022 0.004 0.001

standard dev. 0.001 0.008 0.001 0.021
zi929 95,345 96,472 99,996 97,283 118071

rel. error 0.011 0.048 0.019 0.240
standard dev. 0.004 0.009 0.004 0.019

d1291 50,801 56,264 58,562 58,562 58,750
relative error 0.081 0.112 0.121 0.200

standard dev. 0.008 0.009 0.029 0.011
u2152 64,253 67,064 69,827 68,732 78,692

relative error 0.043 0.086 0.069 0.223
standard dev. 0.006 0.014 0.017 0.015

ca4663 1,209,319 1,277,495 1,331,639 1,304,901 1,547,992
relative error 0.056 0.101 0.079 0.284

standard dev. 0.004 0.024 0.015 0.022
ym7663 238,314 260,199 267,905 266,738 266,738

relative error 0.091 0.124 0.119 0.281
standard dev. 0.021 0.023 0.033 0.022

ja9874 491,924 533,304 555,201 564,581 625,035
relative error 0.084 0.128 0.147 0.276

standard dev. 0.018 0.033 0.046 0.011
gr9882 300,899 327,118 334,135 334,642 383087

relative error 0.087 0.110 0.112 0.273
standard dev. 0.018 0.022 0.021 0.023

usa13509 19,982,859 21,083,162 21,465,644 21,320,901 25,109,189
relative error 0.055 0.074 0.066 0.251

standard dev. 0.007 0.010 0.011 0.012
d18512 645,238 671,752 676,486 674,104 790,769

relative error 0.041 0.048 0.044 0.225
standard dev. 0.003 0.002 0.002 0.013

sw24978 855,597 912,915 927,663 928,355 1,075,056
relative error 0.066 0.084 0.085 0.256

standard dev. 0.008 0.012 0.012 0.011

Table 5. Comparison of TSP solvers via Mann-Whitney U, p = 0.05.

Instance Alg3 vs Alg4 Alg3 vs Ryser-Welch [42] Alg4 vs Ryser-Welch [42]

wi29 = = =
dj38 = = =

qa194 > = >
zi929 > > <

d1291 > > =
u2152 > > >

ca4663 > > <
ym7663 > > <
ja9874 > > >
gr9882 > > =

usa13509 > > <
d18512 = = <

sw24978 > > =



6 Conclusion

We have presented a novel approach to evolving metaheuristics, which generates
new metaheuristic variants containing evolved looping constructs. We evolved
two novel TSP solvers and applied them to benchmark instances of the Travelling
Salesman Problem. We show that not only that the method can produce human-
readable algorithms (our sequence of operations was readily re-coded in Java),
but it can also rediscover effective algorithms and generate new ones. The results
of our experiments are promising: from a small training set, solutions equal or
close to the actual known optima have been found for the benchmark instances
under test. Our next step will be to apply this type of evolutionary hyper-
heuristic to other problem domains as well to generate new hybrid metaheuristics
and to demonstrate the generality and scalability of the proposed method. For
example, personnel scheduling, vehicle routing and numerical optimisation will
be considered with a larger range of instance sizes, allowing the potential of this
technique to be fully evaluated.
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rattari. The irace package, iterated race for automatic algorithm configuration.
Technical report, Citeseer, 2011.

12. Holger H Hoos. Programming by optimization. Communications of the ACM,
55(2):70–80, 2012.
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Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the
art. Journal of the Operational Research Society, 64(12):1695–1724, 2013.

16. Jerry Swan and Nathan Burles. Templar - A framework for template-method
hyper-heuristics. In Genetic Programming - 18th European Conference, EuroGP
2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings, pages 205–216, 2015.
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