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Abstract. Cartesian Genetic Programming (CGP) is applied to solv-
ing differential equations (DE). We illustrate that repeated elements in
analytic solutions to DE can be exploited under GP. An analysis is car-
ried out of the search space in tree and CGP frameworks, examining
the complexity of different DE problems. Experimental results are pro-
vided against benchmark ordinary and partial differential equations. A
system of ordinary differential equations (SODE) is solved using multiple
outputs from a genome. We discuss best heuristics when generating DE
solutions through evolutionary search.

1 Introduction

Differential equations are ubiquitous throughout the natural sciences, modelling
diverse systems from the harmonics of a violin to chemical concentrations in
the blood stream. Widely applied finite difference and finite element routines
can obtain accurate numerical approximations to DE solutions over prescribed
domains [1]. However, the automatic derivation of analytic solutions to many
high order or strongly non-linear DE problems remains challenging under stan-
dard deterministic approaches. Publicly available symbolic solvers apply analytic
techniques such as separation of variables or symmetry reduction, but address
specific classes of DE and require extensive supporting libraries for comprehen-
sive support [2].

There has been some interest in the application of machine learning to DE
since the advent of genetic algorithms. In this paradigm, the analytic solution
can be considered analogous to a search objective, and the equation and any
initial or boundary conditions to training data. In 1996 Diver evolved candidate
solutions to simple ordinary differential equations (ODE), encoding solutions as
strings [3]. Koza briefly addressed learning solutions to ODEs in his seminal
work on problems for Tree Genetic Programming (GP) [4]. Cao later used an
embedded genetic algorithm to tune parameters of a tree GP based solver [5].
More recently, Tsoulos and Lagaris set out fitness functions using a framework
based on Grammar Guided GP [6] and applied them over a comprehensive col-
lection of partial differential equations (PDE) and systems of ODE (SODE). We
are also aware of a novel hybrid GP approach to solving DE implemented by
Kirstukas et. al [7] for engineering applications.
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Given the broad range of techniques historically applied, our goal is to identify
general qualities which enable GP frameworks to efficiently explore DE search
spaces. One defining characteristic of analytic solutions to differential equations
is symbolic symmetry. Where solutions exist, application of the basic rules of
differential calculus to trigonometric, polynomial or exponential functions natu-
rally leads to repeated structure. In the present work, we postulate that DE have
a higher density of analytic solutions under heuristic search in data-structures
which reuse common functional elements. To explore this concept, we carry out
an analysis using a variant on an established graph-based approach, Cartesian
Genetic Programming (CGP) [8], across a set of benchmark DE. The technique
is also examined under simple tree genetic programming, with a view to under-
standing whether representations reusing repeated structure have an advantage
over these particular classes of problem.

Section 2 of this paper outlines some preliminaries of the CGP differential
solver, including the specification of appropriate fitness functions and reproduc-
tion strategy. Section 3 analyses the corresponding search space composition and
describes a method of enumerating DE solutions within CGP data structures.
A set of experimental results are presented over benchmark DE in Section 4
and discussed in Section 5. The work concludes with general comments on using
evolutionary frameworks for solving DE and a summary of outcomes.

2 CGP Implementation

2.1 Reproduction Strategy

The original implementation of Cartesian Genetic Programming can be classed
as a strongly elitist method, since it uses a 1+λ evolutionary strategy without
crossover. The approach selected a single parent from each generation, promoting
itself and λ mutated offspring. Our choice of this representation was motivated
because the framework provides convenient reuse of previous elements through
the evolution of more general directed acyclic graphs (DAG). For this initial
analysis, we preclude techniques such as the use of modules [9] or automatically
defined functions (see comment in Section 5). The CGP policy adopted in this pa-
per employs a weak form of elitism shown in Figure 1.
1: g ← 0
2: Construct a random starting population of size P . Rank by fitness F .
3: while g < gmax and F > tol do
4: Select a new parent with the best fitness.
5: Promote the parent and λ mutated offspring.
6: Promote one offspring from each of the next P −(λ+1) fittest individuals.

7: Re-rank using the promoted population.
8: g ← g + 1
9: end while

Mutations are standard point operations on the CGP genotype and tol is some
minimum error bound on individual fitness. For λ = 1 the method is random
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Fig. 1. Strategy for λ = 5, P = 10. The next generation contains the previous parent,
five offspring of the parent and four offspring from the next best individuals.

search and λ = P −1 is equivalent to conventional CGP. Heuristically, the trade
off in selecting lower values of λ is greater diversity in the search, which reduces
the risk of stagnation. More generally, the policy is related to a conventional μ+λ
search but competes a larger proportion of offspring from the fittest parent. In
preliminary experiments, λ = P/2 was found to be an adequate compromise for
all the benchmark ODE and PDE addressed.

2.2 Fitness Functions for Differential Equations

Consider theproblemoffinding aparticular closedanalytic solutionA to abounded
ODE or PDE, within a domain of interest spanned by the D-dimensional orthogo-
nal basis set x(x1...xD). A is an expression in x which

1. Satisfies the defining equality.
2. Meets all boundary or initial conditions.
3. Remains real and finite.

We adopt the approach of Tsoulos and Lagaris [6], evolving a model function
M(x), taking a weighted aggregate as the fitness F (M). In general this has the
form

F (M) = R(M) + αε(M) (1)

where R and ε are residual errors calculated for M across the equation and condi-
tions respectively. α is an integer weighting parameter. Table 1 shows F (M) for

Table 1. Fitness Functions for DE bounded on a line and a unit square

Differential Equation R(M) ε(M)
dy
dx

= g(x, y), y(x0) = c
∑N

i=1 |M(xi) − dM(xi)
dx

| |M(xi) − y(xi)|i=0

∇2Ψ = g(Ψ, x, y)
∑N

i=1(|M(0, yi) − Ψ(0, yi)|
0 ≤ x ≤ 1

∑N2

i=1 |M(xi, yi) −∇2(M(xi, yi))| +|M(1, yi) − Ψ(1, yi)|
0 ≤ y ≤ 1 +|M(xi, 0) − Ψ(xi, 0)|

+|M(xi, 1) − Ψ(xi, 1)|)
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an example 1st order ODE and 2nd order PDE. In the CGP solver, the differential
terms are calculated by carrying out O(ND) centered difference approximations
at uniformly sampled training points in the inner domain and O(N(D− 1) + 1)
along each bound. Centered difference approximations are evaluated using two
sampling points separated by distance h, contributing error O(h2).

3 Problem Complexity and Search Space Analysis

3.1 Solving Differential Equations in Evolutionary Search

Abstractly, a DE solver under Graph-based GP searches through a finite, discrete
set Ω of representable expressions for members of a subset of solutions, ω ⊂ Ω.
The solution space ω contains all expressions from Ω which are functionally
equivalent to the analytic solution. The concept is illustrated in Figure 2 below.
One method of defining the inherent difficulty of a DE problem is to consider
the probability pA of selecting an analytic solution, a member of ω, by blind
random search. For convenience we work with 1

pA
, terming this the ‘unguided

complexity’ κ.

Fig. 2. Depiction of expressions in the search space of an ODE with solution x2

Definition 1. Unguided Complexity

κ = 1
pA

= |Ω|
|ω|

such that κ is the number of candidates in the total search space per member of
the solution set. A genotype representation of a problem where κ is large induces
proportionally fewer optimal solutions and is combinatorially harder before the
fitness landscape is considered.

3.2 Search Space Ω

Taking a standard case from Koza[4], consider a full bi-arity tree genotype of
depth D. The tree is covered by 2D − 1 functions (interior vertices) and 2D ter-
minals (leaves). Hence for function and terminal sets of size f and T respectively,
the number of syntactically distinct, labelled trees is given by
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|ΩTREE| = f2D−1 T 2D

= T (fT )2
D−1 (2)

For the CGP genotype, ΩCGP is instead defined by combinations of directed
graphs. The closest comparison to the bi-arity tree in CGP is a feed-forward
bi-arity genotype of the form shown in Figure 3. Here the bounding parameter
on ΩCGP is the total genotype length, the number of genes C. When C = 1 the
search space is ΩCGP = fT 2. Generalising to permit connections to all previous
nodes, the size of the total search space is

|ΩCGP| = fC
C−1∏

i=0

(T + i)2 (3)

or more transparently the factorial

|ΩCGP| = fC
C−1∏

i=0

(T + i)2 = fC

(
(T + C − 1)!

(T − 1)!

)2

(4)

Comparing tree depth with CGP length is not straightforward, because they
may imply a different number of nodes per individual. One method is to con-
sider instead the maximum path length in each graph, such that C = D. From
Equations 2 and 4, we then have

|ΩCGP| < |ΩTREE| given that C, D > 4 (5)

using any set of functions and terminals with f > 1 or T > 1. The feed-forward
CGP applied in this experiment explores a smaller space of candidates than the
full tree structure, as the maximum path length increases.

Fig. 3. Example 5 cell bi-arity genome from a single row CGP genotype. Cells 1,3 and
5 are connected to the output. Cells 2 and 4 are redundant.

3.3 Solution Space ω

With increasing genotype length, ω also expands to include increasingly complex
symmetry. An alternative strategy to the challenge of enumerating ω directly
for DE is to make an estimate by blind random sampling. Consider a number
of independent GP runs R on a population size P . Classically the probability
of success of an independent run under random search with no evolutionary
mechanism is just the binomial product

1− (1− pA)Pg (6)
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P ×g being the number of individuals created by generation g. Therefore a good
estimate for pA can be found by empirically fitting Equation 6 to a cumulative
histogram of successes over all runs. Combined with Equations 2 and 4, the
experiment gives us κ and ω for each DE problem. We apply this to a set of
benchmarks in Section 4.

3.4 Parameter Space

To solve an ODE or PDE with genetic programming, the terminal and functions
sets should be specified such that at least one group of elements can be drawn
and ordered to give an expression equivalent to the desired analytic solution.
Figure 4 illustrates how the unguided complexity can increase with additional
functions and terminals. In this simple example, κ tends to grow roughly linearly
with T and f . Interestingly, we note that the complexity when searching with
both log and exp operators is lower than with a set precluding one or the other.
In practice, the availability of the inverse operation introduces new equivalent
solutions within ω and increases the probability of finding an analytic solution
under random search. For simplicity, the following experiments use the minimum
subset of functions under which the analytic forms of all benchmark problems
addressed can be represented. Similarly, any constants required by the search
are pre-seeded, rather than evolved dynamically. Division by zero is protected,
returning one. The full function set included the operators (+ − ∗ / sin cosine
log exp).

Fig. 4. The parameter space for a one dimensional ODE problem where dy
dx

= 2y
x

, with
initial condition y(1) = 1. T = 2 and C = 4).

4 Experiment

Exploring the effectiveness of different GP representations for solving DE re-
quires a defined set of benchmark ODE and PDE. To allow ease of comparison,
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in the following sections we detail a selection of problems drawn from previous
publications [3][6][7]. These problems cover a cross-section of different classes,
order and domains. Table 2 below describes the parameters used throughout
for each algorithm. Values for boundary weighting α and sampling rate N are
optimised over the whole problem set. The maximum number of candidate trees
or graphs was held constant between each set up (P × gmax = 107). Candidates
in tree GP were selected through a binary tournament strategy, with optimal
population size P = 1000. Bloat control was introduced by constraining trees to
a maximum of 150 nodes.

Table 2. Parameters for CGP and Tree Guided Search

Parameter CGP Tree

Population P 10 1000

Max Generations gmax 2000 20

Runs 500 500

Weighting α 100 100

Offspring λ 5 -

Sample Rate N 10 10

Mutation Rate Point 2%

Crossover Rate - 90%

Reproduction Rate - 8%

4.1 Complexity and Performance against ODE

The ODE problem set chosen is summarised in Table 3. These consist of linear
and non-linear problems for which closed form polynomial, trigonometric and
exponential solutions exist. The above problems are chosen to test different as-
pects of the search algorithms. ODEs [3,9] have similar functional form in their
solutions, but treat different equations. These problems should therefore have
a comparable unguided complexity, but evaluate differently under the guided

Table 3. ODE Problem Set

No. ODE Domain Conditions Solution

1 y′ = 2x−y
x

0.1 : 1.0 y(0.1) = 20.1 y = x + 2
x

2 y′ = 1−ycos(x)
sin(x)

0.1 : 1.0 y(0.1) = 2.1
sin(0.1)

y = x+2
sin(x)

3 y′ = − 1
5
y + e−

x
5 cos(x) 0.0 : 1.0 y(0.0) = 0 y = e−

x
5 sin(x)

4 y′ + ycos(x) = 0 0.0 : 1.0 y(0.0) = 1 y = e−sin(x)

5 y′ − 2y
x

= x 0.1 : 1.0 y(1) = 10 y = x2ln(x) + 10x2

6 y′ + y2 = 0 0.0 : 1.0 y(1.0) = 0.5 y = 1
1+x

7 y′′ = −100y 0.0 : 1.0 y(0) = 0, y′(0) = 10 y = sin(10x)

8 y′′ = 6y′ − 9y 0.0 : 1.0 y(0) = 0, y′(0) = 2 y = 2xe3x

9 y′′ = − 1
5
y′ − y − 1

5
e−

x
5 cos(x) 0.0 : 2.0 y(0) = 0, y′(0) = 1 y = e−

x
5 sin(x)

10 y′′ = 4y′ − 4y + exp(x) 0.0 : 1.0 y(0) = 3, y′(0) = 6 y = ex + 2e2x + xe2x
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search. ODEs [5,8,10] are examples of problems with solutions having more com-
plex functional forms and dependency on several common sub-elements. Figure 5
contrasts the unguided complexity κ of the ODE problem set under tree GP and
CGP. Over all known complexity estimates, blind random sampling using the
CGP framework achieved a higher success rate than in the Tree framework,
by factors ranging between 2 (ODE [4,6]) and 100 (ODE [8]). The solutions to
the example ODE are more densely represented under a graph-based framework
than in a tree-based representation.

Fig. 5. Estimates of the unguided complexity, κ, on ODEs 1-9. ODES[5] and [10] did
not converge under blind random search. All other complexity estimates are lower
under CGP.

Figure 6 shows the performance under guided search. The results are presented
using a convenient integral metric, such that

AImax =
1

107

∫ Imax

0

h(I)dI (7)

(Imax = 20000) where A is the area underneath the probability of success curve
h(I), calculated as a discrete sum. h(I) is the chance of having obtained an
analytic solution after I = P × g candidate genomes, taken as an average from
100 runs of the solver. Overall performance for a given number of candidates is
greater as h→ 1. The CGP solver converged on a representation of the analytic
solution for all cases and performance showed good qualitative correlation with
the complexity of each problem. Under guided search, the ODEs having a so-
lution with a simple analytic form were solved more readily by the tree-based
representation, but this did not converge for the high complexity case ODE 5.
The best guided performance of CGP relative to the bi-arity tree GP occurred
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Fig. 6. Guided solver performance on ODE over 20000 candidate solutions, for CGP
and Tree GP. Results are presented using an area metric (Equation 7).

Table 4. Elliptic PDE Problem Set

No. PDE Particular Solution

1 ∇2Ψ(x, y) = 4 Ψ(x, y) = x2 + y2 + x + y + 1

2 ∇2Ψ(x, y) = −2Ψ(x, y) Ψ(x, y) = sin(x)cos(y)

3 ∇2Ψ(x, y) = −(x2 + y2)Ψ(x, y) Ψ(x, y) = sin(xy)

4 ∇2Ψ(x, y) + eΨ = 1 + x2 + y2 + 4

1+x2+y22 Ψ(x, y) = log(1 + x2 + y2)

for problems [1,2,5,8 and 10] which include repeat functional elements in their
solutions.

4.2 Partial Differential Equations

An experiment was carried out to demonstrate proof of concept on partial
differential equations. A collection of benchmark second order elliptic PDEs
were solved using CGP across a Dirichlet bounded unit square, summarised in
Table 4.1 The full general function set was employed.

The full analytic solution was recovered in all cases. On average, the CGP
algorithm took longest to recover the more complex functional forms of PDE[1]
and PDE[4]. The convergence rate is thought to be slow for these problems
because the fitness landscape is dominated by deep local minima near the true

1 A complete specification of the PDE problems and their boundary conditions can
be found in Tsoulos et. al. (2006) [6].
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solution. Both solutions were often approximated by very fit combinations of
nested sine functions, which pre-disposed the search to stagnate.

4.3 CGP and Systems of Differential Equations

An interesting quality of the CGP representation is the intended support for mul-
tiple outputs. Solutions are read from different starting nodes on the genotype
and evolved simultaneously. We applied this aspect to a simple trigonometric
SODE with repeated solutions of the form

y′
1 = cos(x), y1(0) = 0

y′
2 = −y1, y2(0) = 1

y′
3 = y2, y3(0) = 0

y′
4 = −y3, y4(0) = 1

y′
5 = y4, y5(0) = 0

Outputs were obtained from the last n cells in the genome, expanding with one
additional node for each extra ODE, repeating for n > 5. Figure 7 then shows the
corresponding number of candidates I that must be evaluated for a 99% success
probability from repeated runs. In this instance, the computational effort is ap-
proximately the same as solving a set of equivalent independent ODE. Under the
graph-based representation, the new outputs are connected to existing partial so-
lutions. This gives the appearance that solutions with a high degree of symmetry
are grown easily, benefiting from ‘cross-polination’ along the genome.

Fig. 7. Average number of individuals required to solve the test SODE, showing the
increase with system size. Multiple outputs are read from the CGP genome.

5 Discussion

Section 4 demonstrated that GP search on standard DE problems can show
faster convergence when working with representations which support repeated
elements. In this instance, the mechanism we used to explore this was to ap-
ply a graph-based framework, but we would expect similar improvements when
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introducing techniques such as modules or ADFs. For the sample problems ex-
amined, more compact representations spanned a proportionally higher number
of analytic solutions in the search space. It is worth noting that the difficulty
of a DE under heuristic search is not strongly dependent on the form of the
equation itself, but as in symbolic regression [11], on the length and diversity of
the solution and also on boundary conditions.

Common to previous efforts, the main limitation of the approach is the require-
ment to define a sufficient function and terminal set. Applying prior knowledge
of the boundary or initial conditions can provide useful indications of which sub-
set to apply. Throughout all the problems, the boundary weighting condition α
played a critical role in the search. It was found that defining a fitness function
with strongly weighted boundaries ( α = 100) generally led to faster conver-
gence on partial solutions, but naturally became dominated by these candidates
as the weighting increased. A very low weighting (α < 1) skews the population
to include candidates which solve the general DE, but with a different functional
form to the particular solution.

Differential equations are an interesting area for heuristic search techniques,
both as an inductive tool and for engineering applications. In the latter, meth-
ods of seeding may be particularly useful, for example incorporating partial
solutions based on empirical data. Another natural idea is to apply dimensional
constraints, where the metric units of a problem are considered [10]. The ap-
proach could also be improved upon by including better techniques for evaluating
candidate terms, such as automatic or symbolic differentiation [12].

6 Conclusions

The purpose of this initial work was to explore best heuristics for the evolution
of solutions to differential equations under GP. We carried out an analysis of
the search space and empirical performance of two GP solvers, conventional
CGP and tree GP. It was illustrated that GP structures which automatically re-
use common elements, such as graph-based representations, can show improved
performance on target DE where solutions have repeated structure. Proof of
concept was provided for a CGP solver on PDE and Systems of ODE. We further
demonstrated that simple SODE were solvable using multiple outputs from a
graph-based genotype and that this approach scaled efficiently with system size.
A number of guidelines for solving DEs were inferred, including the selection of
compact representations and strongly weighted boundary conditions.
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