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Abstract

We use evolutionary search to design combinational
logic circuits. The technique is based on evolving the
functionality and connectivity of a rectangular array of
logic cells whose dimension is defined by the circuit
layout. The main idea of this approach is to improve
quality of the circuits evolved by the genetic algorithm
(GA) by reducing the number of active gates used. We
accomplish this by combining two ideas: 1) using multi-
objective fitness function, 2) evolving circuit layout. It will
be shown that using these two approaches allows us to
increase the quality of evolved circuits. The circuits are
evolved in two phases. Initially the genome fitness in given
by the percentage of output bits that are correct. Once
100% functional circuits have been evolved, the number of
gates actually used in the circuit is taken into account in
the fitness function. This allows us to evolve circuits with
100% functionality and minimise the number of active
gates in circuit structure. The population is initialised with
heterogeneous circuit layouts and the circuit layout is
allowed to vary during the evolutionary process. Evolving
the circuit layout together with the function is one of the
distinctive  features of proposed approach. The
experimental results show that allowing the circuit layout
to be flexible is useful when we want to evolve circuits
with the smallest number of gates used. We find that it is
better to use a fixed circuit layout when the objective is to
achieve the highest number of 100% functional circuits.
The two-fitness strategy is most effective when we allow a
large number of generations.

Evolvable Hardware approach is a recently developed
technique to synthesise the electronic circuits using
evolutionary algorithms. A central idea of this approach is
to represent each possible electronic circuit as
chromosome in an evolutionary process in which the
standard genetic operators such as initialisation,
recombination, selection are carried out. The circuits may
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be evaluated using software simulation models [1], [2], [3],
[4] or alternatively evolved entirely in hardware [5], [6},
(71, [8].

In this paper, we limit our focus to combinational logic
circuits, which contain no memory elements. Such circuits
contain no feedback paths. Note that this approach can be
easily extended for the combinational multiple-valued
logic circuits. The approach is an extension of evolvable
hardware method proposed in [3], [9], [10], [11] for binary
combinational circuits. A similar approach to the design
multiple-valued combinational circuit has been discussed
in [11], [12], [13]. A discussion concerning a suitable set
of logic gates was given in [13]. It has been shown that the
GA performance strongly depends on the set of logic gates
used to produce the 100% functionally circuits. In [12]
experiments were reported which revealed the dependence
the GA performance with gate array dimensions and the
degree of internal connectivity. Analysis of the evolvable
hardware approach for both binary and multiple-valued
functions shows us that the GA performance strongly
depends on the number of rows and columns and the
internal connectivity [9], [12]. In subsequent discussion we
define the circuit geometry to mean the layout of the
rectangular array of logic cells. It is characterised by just
two numbers: the number of rows and columns in the
cellular array. The degree of connectivity in the circuit
called levels-back defines how many columns of cells to
the left of current column can have their outputs connected
to the inputs of the current cell, this also applies to the
final circuit outputs.

This paper presents an extension of the methods
discussed above. Here we will discuss two possible ways
to improve the quality of evolved circuits. In a previous
work the sole objective was to evolve 100% functional
circuits. The purpose of our work is to consider this aspect
together with attempting to improve the evolved circuits in
terms of the number of active gates used. One of the
obvious ways to improve it is to use a multi-objective
fitness function. Thus in previous works the objective in
digital evolution behaviour was to merely produce a 100%
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Fig. 1. Schematic of chromosome structure
functionally correct circuit (F, fitness). So, the is not changed during evolution process, we refer to it as

evolutionary process is terminated at this point. Here we
continue to evolve the circuit beyond the point of 100%
correctness by modifying the fitness function to include a
measure of circuit’s efficiency (F, fitness). As we mention
above the choice of suitable circuit geometry is a very
complicated task and is intimately linked with the
complexity of the function implemented. So, in order to
avoid this we investigate the possibility of evolving the
circuit geometry at the same time as trying to evolve 100%
functional circuits. The circuit geometry defines the length
of the chromosome, thus we work with chromosomes of
variable length. In this scheme, mutation is carried out in
two ways. First, we can mutate genes associated with a
circuit in a fixed geometry, and secondly, we can by
mutation choose the circuit geometry. The main purpose of
circuit layout evolution was to try to evolve the best circuit
layout together with evolving circuit functionality.
However during the GA execution we find the interesting
result that actually using a flexible circuit geometry allows
us to reduce the number of active gates in circuit [14],
[15]. This was unexpected. In our further research we
define several strategies for the GA. We investigate cases
where we use homogeneous, heterogeneous or partially
heterogeneous (heterogeneous only at the initialisation
stage of GA) circuit layouts during GA execution and
determine the GA performance as a function of both
fitness measures.

1 The Evolutionary Algorithm

In order to evolve combinational logic circuits, an
evolutionary algorithm using tournament selection with
elitism and uniform crossover has been implemented, these
details are given in the following subsections. During the
evolution process we only allow the circuit layout to be
changed by mutation by altering the number of rows or
columns. In this case we will refer to this as heterogeneous
circuit layout during evolution. When the circuit geometry

the homogeneous circuit layout.
1.1 Encoding

There are two aspects required to define any
combinational logic network. The first is the cell-level
functionality and the second is the inter-connectivity of the
cells between the circuit inputs and outputs. An encoding
of chromosome was adopted that satisfies these two
aspects.

A combinational logic circuit is represented as a
rectangular array of logic gates (Fig. 1). Each logic cell in
this array is uncommitted and can be removed from the
network if they prove to be redundant. The inputs to any
cell in the combinational network may be logical
constants, primary and inverted inputs, as well as the
outputs of logic cells which are in columns to the left of
the cell in question. In the work reported in this paper we
define each logic function to be chosen from the set of
functions AND, OR, NOT, EXOR with primary and
inverted inputs or a multiplexer.

The chromosome is represented by a 3-level structure: 1)
Geometry structure; 2) Circuit structure; 3) Gate (cell)
structure. At the first level the global characteristics of the
circuit are defined: These are levels-back and the number
of rows and columns. The circuit geometry can be changed
at this level. At the second level the array of cells are
created and the circuit outputs are determined. Finally the
third level represents the structure of each cell in the
circuit. This data consists of the number of inputs, the
input connections and the functional gene. The number of
inputs in the cell depends on the type of cell and is defined
when the value of functional gene is known (i.e. a
multiplexer has three inputs while all others have only two
inputs). Note that the number of inputs as well as the
number of outputs are allowed to be variable, but in this
paper we consider only 2 or 3 input 1 output gates.

An example of the chromosome representation with the
actual circuit structure is given in Fig. 2. Let us examine a
possible circuit representing a 1-bit adder with carry. This
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Fig. 2. An example of the phenotype and corresponding genotype of a chromosome with 3x3 circuit geometry

function has 3-inputs and 2-outputs and is implemented
here on a combinational network with 3x3 circuit
geometry (N, x N, ). The circuit inputs are labelled as
follows: 0 and 1, which represent the logical constants O
and 1 respectively, labels 2, 3 and 4 correspond to the
input variables x, x, and x, respectively. The inverted
inputs !x,, !x,, lx, are represented as 5, 6 and 7. In this
example the functional gene (shown in bold) represents
one of the 13 possible gates (AND, OR, EXOR with
primary and inverted inputs or multiplexer). The functional
gene may be a positive or negative integer. If positive then
the function is a multiplexer and the integer represents the
control connection. If functional gene is negative, we use
an encoding table to define the type of gate (Table 1).

The output of each cell is assigned an individual address.
Thus the output of the cell located in the 0" column and in
the 0" row is labelled as 8. The output of logic cell in the
2" column and 2" row is labelled as 16. The number of
circuit outputs is defined by the number of outputs in the
logic function implemented. The logic cell label
determines each of these outputs. Let us examine the
encoding of the 12" logic cell in genotype <-12 7 8>. We
refer to this representation of gate as gate genotype. The
functional gene defining the type of this gate is -12. This
value corresponds to the EXOR gate with inverted inputs
in the gate-encoding table (Table 1).

The examined cell has two inputs. The first input is
connected to the input !x, and second to the output of the
8" cell. The cell 8 depends on two variables: !x, and !x,.
So, in this case the logic function that describes the 12"
cell depends on three variables: !x, !x, and !x,. Let us
consider the 16" gate, with genotype <10 9 13>. Since the
functional gene is positive, the gate is multiplexer and the
functional gene with value 10 corresponds to the control
input. The inputs of this multiplexer are connected to the

outputs of gates 9 and 13. The outputs of circuit are

connected to the outputs of the 16" and 12" logic gates.
The fitness F of a chromosome is defined as follows:

Fe Fi=c, if ¢<100.0
F,=c+y, if ¢=100.0
where ¢ is the percentage of the circuit output bits that

are correct, yis the number of gates that are not involved
in the circuit.

Table 1. Cell gate functionality according to the
negative gene value in chromosome

Functional gene| Gate function
-1 x, AND x
-2 x, AND !x
-3 1x, AND x
-4 1x, AND !x
-5 x, OR x
-6 x, OR !x
-7 1x, OR x
-8 1x, OR !x
-9 x, EXOR x
-10 x, EXOR !x
-11 1x, EXOR x
-12 1x, EXOR !x

The maximum F, is equal to (100.0+ pymax # pymax 1y jp

rows CO )l umns

this case no gates are used. The fitness function for one-bit
adder with carry the fitness is 103.0 for the circuit shown
in Fig. 2. This means that this circuit represents a 100%
functional one-bit adder with carry and there are 3 logic
gates that are not involved in the combinational
implementation of this circuit. In other words, there are 6
gates, which are actually used to synthesise the one-bit
adder with carry, because Fz‘m‘lx =100.0+3*3=109.0.



1.2 Objective Function and Fitness

One of the objectives of combinational circuit design is
to construct a circuit utilising the minimum number of
gates from the behavioural specification of the circuit
given by the truth table. The evaluation process consists of
the two main steps. First we are trying to find the circuits
with 100% functionality (F, fitness) and second we are
trying to minimise the number of active gates in 100%
functional circuits (F, fitness). An active gate is a gate,
which is proved to be not redundant. We use two strategies
in our GA: 1) F,; 2) F+F, In the first strategy, the
chromosome is evaluated using F, fitness only and once
the 100% functional circuit evolved, the evolution process
is terminated. In the case of F +F, strategy, F, fitness is
activated as soon as F,=100.0 and the number of inactive
gates in circuit is estimated. When flexible circuit
geometry is employed, F, is calculated based on the
maximum available circuit layout.

1.3 Initialisation procedure

The initialisation procedure contains several steps:

1. Define circuit geometry of chromosomes in population;
2. Initialise the genotype of cells;

3. Generate the circuit outputs for each chromosome.

The first step defines the circuit geometry for the
chromosomes. In flexible circuit layout, any circuit
geometry may be used up to the maximum number of rows
and columns. In fixed circuit layout all chromosomes have
the same circuit geometry. We say that we have
homogeneous circuit layout during initialisation process
when the circuit layout for all chromosomes is the same.
The heterogeneous circuit layout occurs when the
chromosomes are initialised with different circuit layouts.
During the second and third step the initialisation of cell
inputs and circuit outputs is performed in accordance with
the levels-back constraint and the type of variables which
are able to be present throughout all circuit. Thus if the
logic constants are allowed as input connections
throughout the circuit, then during initialisation procedure
the inputs of gates can be chosen from the set of inputs
constrained by levels-back or from the set of logical
constants. The same procedure is true for the primary and
inverted primary inputs.

1.4 Mutation

We use two types of mutation: circuit mutation and
geometry mutation. The circuit mutation allows us to
change the type of genes in a chromosome but excludes
the number of columns and rows. The geometry mutation
changes the numbers of rows or columns in the rectangular
array. The maximum numbers of rows and columns are

predefined. In both cases the mutation rate has to be
chosen carefully, since it can dramatically affect the GA
performance.

Circuit Mutation: The circuit mutation allows us to
change the following three features of the circuit: 1) Cell
input 2) Cell type and 3) Circuit output. Each of these
parameters is considered as an elementary unit of the
genotype. The circuit mutation rate defines how many
genes in the population are involved in mutation. The
chromosome contains 3 different types of genes, whose

number is :
pop _size

Nowes = 3, (3-Nj

genes

+N

ates outputs )
i=1

where N, is the number of outputs in the circuit, N

is the number of gates in the i-th chromosome.

gates

Geometry Mutation: Geometry mutation allows us to

change the number of rows and columns in a chromosome.
Geometry mutation is applied to each chromosome with a
given probability. In this case the numbers of rows and
columns are treated as an elementary unit of the genotype.
Either the number of rows or the number of columns is
changed with equal probability. The geometry mutation
consists of the two main steps: 1) Gene mutation 2) Repair
algorithm. In the first step the new number of columns or
rows of the chromosome is randomly defined. At the
second step the repair algorithm is applied to ensure that a
chromosome with a new geometry represents a valid
genotype.
Let us consider geometry mutation process for
chromosome with 3x3 circuit geometry. Let N . and N,
be the number of columns and rows of chromosome
assigned to be mutated and new_value is the new value of
mutated genes chosen randomly. The gene mutation
procedure is the following:

1. Define the circuit mutation rate P,,.

2. Generate random number for each chromosome,
randle [0, 1].

3. If (randl < P,) the geometry mutation is applied to the
current chromosome.

4. Generate random number rand2e [0, 1].

5. If (rand2 < 0.5) the number of columns in chromosome
is chosen to be mutated and the new number of columns

(new_value) is generated from the range [1, NI ].

Else the number of rows is considered as mutated gene
and the new number of rows (new_value) is generated

from the range [1, N;Eilvxs ].

Let N*™ be the number of rows or columns in
chromosome in which the gene is assigned to be mutated
and N is the maximum number of rows or columns
which is allowed to be in circuit structure. Then the new



value of the mutated genes can be defined using one of the
following three strategies:

1. Global geometry mutation (GGM),
new_value € [1, N™];

2. Bounded geometry mutation (BGM),
new_value € [1, N“™];

3. Local geometry mutation (LGM),

new_values = N*""'t1.
The first strategy allows us to generate new circuit
geometry. The number of columns and rows is randomly
defined in the ranges [I, y™3 ] and [1, yMaX]

columns rows
respectively. The new number of columns and rows is not
related to the current circuit geometry. The second strategy
is used to reduce the circuit geometry used in
chromosome. The idea of this strategy came from
observing that using the global geometry mutation tended
to produce circuits with larger circuit geometry. The third
strategy is assigned based on the idea of local search of
circuit geometry. This strategy guarantees to produce
comparatively small numbers of new cells in the
chromosome in comparison with the first one.

After new_value is defined, the geometry mutation is
performed in the following manner. First, consider the case
when the mutated gene is the number of columns. In this
case the new circuit structures, shown in Fig. 3 (structures
A and B), can be synthesised. If (new_value >N_,, ), we
have to add new columns in the chromosome
representation (Fig. 3 (structure A)). The gates in new
columns are initialised using the initialisation procedure. It
is possible, however, that the circuit output disobeys the
levels-back constraint. Thus, the chromosome may need to
be repaired. The repair algorithm checks whether the
circuit outputs obey the levels-back constraint, and
whether all the cell inputs are valid. If the circuit output
does not satisfy this condition a new circuit output is
initialised. If (new_value <N, ) we have to remove
some columns in the circuit structure (Fig. 3 (structure B)).
After the new structure is obtained, a repair algorithm is

A. Chromosome: 3x4

B. Chromosome: 3x2

applied to the circuit output, because the circuit output can
refer to a gate, which no longer exists in the circuit. In the
case when the mutated gene is the number of rows, the
structures C and D given in Fig. 3 can be synthesised. If
(new_value > N, ) the new rows of gates are added to the
circuit structure (Fig. 3 (structure C)). Again, these gates
are initialised. There is no need to apply repair algorithm
to the circuit outputs in this case because all connections
are not changed and the circuit outputs will still refer to
the correct logic cells in the circuit structure. If
(new_value < N_,) the last (N, - new_value) rows are
removed from the circuit structure (Fig. 3 (structure D)).
In this case the inputs of the remaining gates as well as
circuit outputs can refer to gates which are no longer
present. Therefore each gate genotype and the circuit

outputs have to be repaired.
1.5 Recombination

Recombination is implemented with uniform crossover.
For two chromosomes, the uniform crossover generates
two new chromosomes by swapping two genes in
chromosomes. Because our chromosome structure contains
three levels, on each level the components of chromosome
can be examined like a “gene” or “swapping block”. Thus
we have three different crossover operators: 1. Gene
uniform crossover; 2. Cell uniform crossover; 3. Geometry
uniform crossover. The number of chromosomes selected
for breeding is defined by the crossover rate, which is
carried out on a cellular level. In order to preserve the
interconnection conditions, the repair algorithm checks the
inputs of the logic gates for correctness. When two
chromosomes with different geometries undergo crossover
it is very likely that merely swapping genes to produce the
offspring, will generate invalid genomes. These would
have to be repaired (randomly initialised), and this would
introduce a considerable amount of randomness into the
recombination process. Therefore, the selection of the
correct crossover rate and its type is very important.
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Fig. 3. The geometry mutation process for a chromosome with geometry 3x3



When we refer to the gene uniform crossover, we mean
that any gene of logic cell as well as the circuit outputs can
be exchanged. In case of cell uniform crossover the data,
describing the behaviour of a logic gate such as functional
gene, inputs, control input, are swapped. In geometry
uniform crossover, the columns or rows of logic cells in
addition to circuit outputs are involved in the crossover
process. In this case whole column or row of logic gates is
swapped and connections are restored if necessary.

Let us consider the “restoring process” in the case when
the cells to be swapped belong to chromosomes with
different circuit layouts. In this case the cell will refer to
different cells in the circuit because of the specific features
of encoding. In order to avoid it we correct the cell data in
such a way that they refer to the cells positionally located
in the same place as with the parents’ chromosome. In the
case when the cell contains a connection to a non-existent
cell, a new connection is randomly generated such that it is
valid. Let us consider the case mentioned above with an
example of «cell uniform crossover with parent
chromosomes with 3x2 and 3x3 circuit geometry and
assume the cell to be swapped is located in 2" row and 3"
column (Fig. 4). Let us consider the case where the cell
from parent 2 is exchanged with cell in parent 1. This cell
has connection to the 10" and 11" cells in circuit.
Positionally it corresponds to the cells located in 2"
column and 1" and 2" (10 and 11) rows. When we
exchange this cell in the chromosome with 3x3 circuit
geometry, this cell now represents the connections with
cells located in 1" column and 3" row and in 2™ column
and 1" row. Thus the positional connection is broken. In
order to restore it we have to reassign the inputs for this
cell according to the labelling process in chromosome.
Thus this cell now will be described to <-4 11 12>. The
same process is applied to the cell in parent 1. But in this

nd

case the input refers to the cell located in 2" column and
3" row. Because the chromosome where this cell is going
to be allocated has only 2 rows (parent 2 has only 2 rows),
this input has to be initialised. Thus the “restoring process”
allows us to preserve the positional connections of cells

and provides a less destructive process.

2 Experimental Results

In this section we will consider some experimental
results obtained for the one-bit adder with carry and two-
bit multiplier. We perform two main types of experiments:
1) Fitness function; 2) Crossover and Mutation strategies.

The main idea of these experiments is to define which of
the GA strategies allows us to determine whether circuit
geometry evolution brings some advantages or not. The
initial data for the experiments is given in Table 2.

2.1 Experiment 1: Two fitness function strategies

The following experiment shows us how using different
fitness evaluation strategies affects the GA performance
and the quality of circuits evolved. For this purpose the
same experiments were performed for fixed and flexible
circuit geometry with and without the F, fitness function.
The experimental results obtained are summarised in the
Table 3. Comparing the best average F, finesses and the
number of 100% functional cases for 3 mutation strategies,
we find that the global geometry mutation is the most
effective. But in terms of the number of active gates in the
circuit evolved the best results were obtained in Table 3. It
is interesting to note that when we evolve functions during
1000 (addlc.pla) or 3000 (mult2.pla) generations, we do
not achieve significant improvements in terms of the
number of active gates in circuit. When we increase the
number of generations to 50000 it is clear that the average
best F, fitness is improved. Thus, in the case of addlc.pla
function we can notice improvements for 2-3 gates, but in
case of mult2.pla it is improved only slightly. One of the
reasons why we can see only small improvements for the
mult2.pla function is that the first GA with F, only
achieves a sufficient number of 100% functional circuits
when the number of generations is this large. Therefore the
optimising fitness function F+F, does not have long
enough to make a significant difference. It is interesting to
note that when we use a fixed geometry, the average best
F, fitness is higher in comparison with the same
experiments for flexible circuit layout. However the
average best F, fitness for this case is the lowest one and
















