
Self Modifying Cartesian Genetic Programming: Parity

S. Harding, J. F. Miller and W. Banzhaf

Abstract— Self Modifying CGP (SMCGP) is a developmental
form of Cartesian Genetic Programming(CGP). It differs from
CGP by including primitive functions which modify the pro-
gram. Beginning with the evolved genotype the self-modifying
functions produce a new program (phenotype) at each iteration.
In this paper we have applied it to a well known digital circuit
building problem: even-parity. We show that it is easier to solve
difficult parity problems with SMCGP than either with CGP or
Modular CGP, and that the increase in efficiency grows with
problem size. More importantly, we prove that SMCGP can
evolve general solutions to arbitrary-sized even parity problems.

I. INTRODUCTION

In biology, the process of transformation from genotype

to phenotype is a complex interaction in which a genotype,

together with the cellular machinery and the environment

gives rise to a stage of the phenotype, which itself influences

the decoding of the genotype for the next stage [1]. One can

regard this process as one of self-modification which could

take place both at the genotype or cellular level. Implicit in

this notion is the concept of time or iteration. Accordingly,

we define development to be the time-dependent process

whereby genotype and phenotype, in interaction with each

other and an external environment, produce a phenotype that

can be selected for. This definition allows us to include many

forms of development, such as models of genetic regulation,

graph re-writing, and self-modification. It is our belief that

self-modification is an interesting and unifying way to look

at development. For instance, we can look at multi-cellular

development as a process in which a phenotype modifies

itself over time. We can also view development from the per-

spective of a single cell, where the genetic regulatory systems

are a mechanism for development whereby a cell modifies

its own phenotype through genetic self-modification over

time. Kampis [2] has conducted an impressive philosophical

analysis of the notion and importance of self-modification in

biology and its relevance to ‘emergent computation’.

In evolutionary computation, the idea of self-modification

was discussed in the ontogenetic programming system of

Spector and Stoffel [3], the graph re-writing system of Gruau

[4] and the developmental method of evolving graphs and

circuits of Miller [5]. Recently, however, much work in com-

putational development has focused at a multi-cellular level

and the aim has been to show that evolution could produce

developmental cellular programs that could construct various

cellular patterns (i.e. flags, or spheres, etc) [6]. Furthermore,

S.Harding and W.Banzhaf are with the Department of Computer
Science, Memorial University, Newfoundland, Canada; www.cs.mun.ca;
email: (simonh,banzhaf)@cs.mun.ca. J. Miller is with the Department of
Electronics, The University of York, UK; www.elec.york.ac.uk; email:
jfm7@ohm.york.ac.uk.

another important aim has been to demonstrate that evolving

developmental programs are a better way to evolve systems

with an arbitrarily large number of parts than to directly

evolve a genetic representation of such a system. While the

former is an interesting goal, it is not explicitly computational

in that often one must apply some other mapping process

from the developed cellular structure into a computation.

In our previous work we showed that by utilizing self-

modification operations within an existing computational

method (a form of genetic programming, called Cartesian

Genetic Programming, CGP) we could obtain a system that

(a) could develop over time in interaction with environmental

inputs and (b) would at every stage provide a computational

function [7]. It could stop its own development, if required,

without external input. Thus, if the computational task did

not require development, evolution could decide for itself

not to allow it. Another interesting feature of the approach

is that, in principle, programs could be evolved which allow

the replication of the original code. In this paper we have

improved on our former work in SMCGP by concentrating

on the scalability problem. Can evolution be used to produce

arbitrarily large structures that represent provably general so-

lutions to computational problems? We answer this question

in the affirmative for the case of evolving a general solution

to even parity (i.e. we obtain a program that can build a

parity circuit for an arbitrary number of inputs). We have

also compared the computational efficiency of this approach

to non-developmental methods that use the same Cartesian

genetic representation and we show that self-modifying CGP

is more efficient.

II. RELATED WORK

Parity is a well studied problem in Genetic Programming.

Koza tackled up to 11-parity [8] using a GP system with

automatically defined functions (ADFs), and found them

difficult to evolve. Without ADFs, his approach failed to

evolve circuits beyond 5 inputs [9].

In [10] very large parity circuits, with 22-inputs, are

directly evolved. The authors describe three different ap-

proaches to solving the problem using a novel crossover op-

erator, a submachine code level representation and a parallel

population approach. This appears to be the largest, directly

evolved parity circuit in the literature.

Other approaches have looked at finding general solutions.

For example, in [11] machine language level programs were

evolved that could iterate over the bits in a string and could

be easily determine parity. The solutions would be suitable

for any length bit string. Recursion has also been successfully

used to solve the parity problem [12], [13]. These approaches

produced programs rather than circuits to solve the problem.

285978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

In contrast, the technique presented in this paper evolves

programs that produce circuits.

An early developmental form of CGP successfully solved

circuits up to 5 inputs [5]. However, none of the evolved

solutions appeared to generalize. In [7], Self Modifying CGP

was demonstrated for the first time, and parity circuits of

up to 8-inputs were evolved. It was shown that SMCGP

outperformed the best known results for a CGP based im-

plementation.

Another developmental system uses L-systems to generate

a grammar for modifying GP trees [14]. This approach is

similar in concept to [7]. Circuits of up to 12-inputs were

evolved with high success. The authors also found that the

developmental approach was superior to previous, similar

representations. [15] evolved artificial protein rules that con-

figured FPGA blocks. The evolved rules could be iterated

and used pattern matching and their behaviour depended on

the matching of proteins at each time step. Again, circuits of

up to 12-inputs were evolved. In contrast, the authors were

unable to evolve circuits larger than 4 inputs using a direct

encoding.

III. SELF MODIFYING CGP

A. Cartesian Genetic Programming (CGP)

Cartesian Genetic Programming was originally developed

by Miller and Thomson [16] for the purpose of evolving

digital circuits and represents a program as a directed graph

One of the benefits of this type of representation is the

implicit re-use of nodes in the directed graph.

Originally CGP used a program topology defined by a

rectangular grid of nodes with a user defined number of rows

and columns. However, later work on CGP always chose the

number of rows to be one, thus giving a one-dimensional

topology, as used in this paper. In CGP, the genotype is a

fixed-length representation and consists of a list of integers

which encode the function and connections of each node in

the directed graph.

CGP uses a genotype-phenotype mapping that does not

require all of the nodes to be connected to each other,

resulting in a bounded variable length phenotype. This allows

areas of the genotype to be inactive and have no influence on

the phenotype, leading to a neutral effect on genotype fitness

called neutrality. This type of neutrality has been investigated

in detail [16], [17], [18] and found to be extremely beneficial

to the evolutionary process on the problems studied.

B. SMCGP

In this paper, we use a slightly different genotype repre-

sentation to previously published work using CGP.

Each node in the directed graph represents a particular

function and is encoded by a number of genes. The first

gene encodes the function the node is representing. This is

followed by a number of connection genes (as in CGP) that

indicate the location in the graph where the node takes its

inputs from. Then three real-valued genes encode parameters

required for the function. Finally there is a binary gene that

Fig. 1. The genotype maps directly to the initial graph of the phenotype.
The genes control the number, type and connectivity of each of the nodes.
The phenotype graph is then iterated to perform computation and produce
subsequent graphs.

indicates if the node should be used as an output. In this

paper all nodes take two inputs, hence each node is specified

by 7 genes. An example genotype is shown in Figure 1.

As in CGP, nodes take their inputs in a feed-forward

manner from either the output of a previous node or from a

program input (terminal). The actual number of inputs to

a node is dictated by the arity of its function. However,

unlike previous implementations of CGP, nodes are addressed

relatively and specify how many nodes back in the graph they

are connected to. Hence, if the connection gene is 1 it means

that the node will connect to the previous node in the list, if

the gene has value 2 then the node connects 2 nodes back and

so on. All such genes are constrained to be greater than 0,

to avoid nodes referring directly or indirectly to themselves.

If a gene specifies a connection pointing outside of the

graph, i.e. with a larger relative address than there are nodes

to connect to, then this is treated as connecting to zero value.

Inputs arise in the graph through special functions. This is

described in section III-C.

This encoding is demonstrated visually in Figure 2. The

relative addressing used here attempts to allow for sub-graphs

to be placed or duplicated in the graph whilst retaining

their semantic validitity. This means that sub-graphs could

represent the same sub-function, but acting on different

inputs.

Each node in the SMCGP graph is defined by a function

that is represented internally as an integer. Associated with

each function are genes denoting connected nodes and also

a set of parameters that influence the function’s behavior.

These parameters are primarily used by functions that per-

form modification to the phenotype’s graph. In the genotype

they are represented as real numbers but certain functions

can require that they be cast (truncated) to integers.

Section V details the available functions and any associ-

ated parameters.

C. Inputs and outputs

The way we handled inputs in our original paper on

SMCGP was flawed. It did not scale well as sub-graphs

became disconnected from inputs, because self-modifying

286 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Fig. 2. Example program execution. Showing the DUP(licate) operator being activated, and inserting a copy of a section of the graph (itself and a
neighboring functions on either side) elsewhere in the graph in next iteration. Each node is labeled with a function, the relative address of the nodes to
connect to and the parameters for the function (see Section III-D).

functions moved them away from the beginning of the

graph causing them to lose their semantic validity. The new

input strategy we devised, required two simple changes from

conventional CGP and our previous work in SMCGP.

The first, was to make all negative addressing return false

(or 0 for non-binary versions of SMCGP). In previous work

[7] , we used negative addresses to connect nodes to input

values.

The second was to change how the INPUT function works.

When a node is of type INP (shorthand for INPUT), each

successive call gets the next input from the available set of

inputs. If the INP node is called more times than there are

inputs, the counting starts from the beginning again, and the

first node is used.

Outputs are handled slightly differently to inputs. We

added another gene to the SMCGP node that defines if the

phenotype should attempt to use that node as an output. In

previous work, we used the last n-nodes in the graph to

represent the n-outputs. However, as with the inputs, we felt

this approach did not scale as the graph changes size. When

an individual is evaluated, the first stage is to identify the

nodes in the graph that have their output gene set to 1. Once

these are found, the graph can be evaluated from each of

these nodes in a recursive manner.

If no nodes are flagged as outputs, the last n nodes in

the graph are used as the n-outputs. Essentially, this reverts

the system back to the previous approach. If there are more

nodes flagged as outputs than are required, then the leftmost

nodes that have flagged outputs are used until the required

number of outputs is reached. If there are fewer nodes in the

graph than required outputs, the individual is deemed to be

corrupt and it is not evaluated (it is given a bad fitness score

to ensure that it is not selected for).

D. Evaluation of the SMCGP graph

From a high level perspective, when a genotype is evalu-

ated the process is as follows. The initial phenotype is a copy

of the genotype. This graph is then executed, and if there are

any modifications to be made, they alter the phenotype graph.

Technically, we consider the genotype invariant during the

entire evaluation of the individual and perform all modifica-

tions on the phenotype which started out as a copy of the

genotype. In subsequent iterations, the phenotype will usually

gradually diverge from the genotype.

The encoded graph is executed in the same manner as stan-

dard CGP, but with changes to allow for self-modification.

The graph is executed by recursion, starting from the output

nodes down through the functions, to the input nodes. In this

way, nodes that are unconnected are not processed and do

not effect the behavior of the graph at that stage.

For function nodes (e.g. AND, OR, XOR) the output value

is the result of the mathematical operation on input values.

Each active (non-junk) graph manipulation function (start-

ing on the leftmost node of the graph) is added to a “To

Do” list of pending modifications. After each iteration, the

“To Do” list is parsed, and all manipulations are performed

(provided they do not exceed the number of operations

specified in the user defined “To Do” list length). The parsing

is done in order of the instructions being appended to the list,

i.e. first in is first to be executed.

The length of the list can be limited as manipulations are

relatively computationally expensive to perform. Here we

limit the length to just 2 instructions. There is a single “To

Do” list for evaluation of each individual, and hence sub-

procedures also share the same list. All graph manipulation

functions require a number of parameters, as described in

section V. These parameters are encoded in the genotype,

and the necessary casts are made when the “To Do” list is

parsed.

IV. EVOLUTIONARY ALGORITHM AND PARAMETERS

We use an (1+4) evolutionary strategy for the experiments

in this paper. We bootstrap the process by testing a population

of 50 random individuals. We then select the best individual

and generate four offspring. We test these new individuals,

and use the best of these to generate the next population.

We have used a relatively high (for CGP) mutation rate

of 0.1. This means that each gene has a probability of

0.1 of being mutated. SMCGP, like normal CGP, allows

for different mutation rates to effect different parts of the

genotype (for example functions and connections could have

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 287

different mutation rates). In these experiments, for simplicity,

we chose to make all the rates the same. Mutations for the

function type and relative addresses themselves are unbiased;

a gene can be mutated to any other valid value.

For the real-valued genes, the mutation operator can

choose to randomize the value (with probability 0.1) or add

noise (normally distributed, sigma 20).

Evolution is limited to 10,000,000 evaluations. Trials that

fail to find a solution in this time are considered to have

failed.

The evolutionary parameter values have not been opti-

mized, and we would expect performance increases if more

suitable values were used.

V. FUNCTION SET

The function set is defined in two parts. The first is a set of

modification operators, as described in section V. These are

common to all data types used in SMCGP. The remainder of

the set are the computational operations. The data type these

functions manipulate is determined by the problem definition.

Here, the data is binary strings. The complete set of available

binary operators are defined in table I. Depending on the

experiment, different sub-sets of this set are used.

Self modifying functions are typically defined by 4 vari-

ables. The genotype (and phenotype) nodes contain three

double precision numbers, called “parameters”. In the follow-

ing discussion we denote these P0,P1,P2. The other variable

is the integer position of the node in the phenotype graph

that contained the self modifying function (i.e. the leftmost

node is position 0), we denote this x. In the definitions of

the SM functions we often need to refer to the values taken

by node connection genes (which are all relative addresses).

We denote the jth connection gene on node at position i, by

cij .

There are several rules that decide how addresses and pa-

rameters are treated:

• When Pi are added to the x, the result is treated as an

integer.

• Address indexes are corrected if they are not within

bounds. Addresses below 0 are treated as 0. Addresses

that reach beyond the end of the graph are truncated to

the graph length.

• Start and end indexes are sorted into ascending order

(if appropriate).

• Operations that are redundant (e.g. copying 0 nodes)

are ignored, however they are taken into account in the

ToDo list length.

The functions (with the short-hand name) are defined as

follows:

Duplicate and scale addresses (DU4) Starting from posi-

tion (P0 + x) copy (P1) nodes and insert after the node at

position (P0 +x+P1). During the copy, cij of copied nodes

are multiplied by P2.

Shift Connections (SHIFTCONNECTION) Starting at node

index (P0 + x), add P2 to the values of the cij of next P1.

ShiftByMultConnections (MULTCONNECTION) Starting

at node index (P0 + x), multiply the cij of the next P1 nodes

by P2.

Move (MOV) Move the nodes between (P0 +x) and (P0 +
x + P1) and insert after (P0 + x + P2).

Duplication (DUP) Copy the nodes between (P0 +x) and

(P0 + x + P1) and insert after (P0 + x + P2).

DuplicatePreservingConnections (DU3) Copy the nodes

between (P0 + x) and (P0 + x + P1) and insert after (P0 +
x+P2). When copying, this function modifies the cij of the

copied nodes so that they continue to point to the original

nodes.

Delete (DEL) Delete the nodes between (P0+x) and (P0+
x + P1).

Add (ADD) Add P1 new random nodes after (P0 + x).

Change Function (CHF) Change the function of node P0

to the function associated with P1.

Change Connection (CHC) Change the (P1mod3)th con-

nection of node P0 to P2.

Change Parameter (CHP) Change the (P1mod3)th param-

eter of node P0 to P2.

Overwrite (OVR) Copy the nodes between (P0 + x) and

(P0 + x + P1) to position (P0 + x + P2), replacing existing

nodes in the target position.

Copy To Stop (COPYTOSTOP) Copy from x to the next

“COPYTOSTOP” function node, “STOP” node or the end

of the graph. Nodes are inserted at the position the operator

stops at.

VI. EXPERIMENTAL SETUP

A. Fitness function

Fitness is computed as the number of correctly predicted

bits over all test cases. The fitness function used here tests

the program to produce various sized parity circuits during

development. In the first iteration, it tests for 2 input parity,

then 3 input parity and continues up to a maximum number of

inputs. If the candidate solution fails to find a totally correct

solution for a given input size, it is not tested on other input

sizes - allowing the process to abort development and save

CPU time. We define each of these circuit sizes to be one

test case. We evolve for 18 test cases (2 inputs to 20 inputs).

The fitness function is designed to force the SMCGP to

find a solution that grows through each test case to the

next. In this way, the chance of finding a general solution

is maximised.

The fitness function can be summarized as:

• For each individual:

– For each test case (2 to 20 inputs):

∗ Take the genotype.

∗ Iterate it (inputs− 2 times)

∗ Apply input bit patterns

∗ Count incorrect outputs, and add to fitness sum

∗ If fails to solve test case, continue to next

individual.

288 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Function Operation

BAND a AND b
BOR a OR b
BNAND NOT (a AND b)
BXOR a XOR B
BNOR NOT (a OR b)
BNOT NOT a
BIAND (NOT a) AND b
BF0 FALSE
BF1 (a AND b)
BF2 a AND (NOT b)
BF3 (a AND (NOT b)) or (a AND b)
BF4 (NOT a) AND b
BF5 ((NOT a) AND b) OR (a AND b)
BF6 ((NOT a) AND b) OR (a AND

(NOT b))
BF7 ((NOT a) AND b) OR (a AND

NOT(b)) OR (a AND b)
BF8 ((NOT a) AND (NOT b))
BF9 ((NOT a) AND (NOT b)) OR (a

AND b)
BF10 ((NOT a) AND (NOT b)) OR (a

AND NOT (b))
BF11 ((NOT a) AND (NOT b) OR a

AND (NOT b) OR a AND b)
BF12 ((NOT a) AND (NOT b) OR (NOT

a) AND b)
BF13 ((NOT a) AND (NOT b) OR (NOT

a) AND b OR a AND b)
BF14 ((NOT a) AND (NOT b) OR (NOT

a) AND b OR a AND (NOT b))
BF15 ((NOT a) AND (NOT b) OR (NOT

a) AND b OR a AND (NOT b) OR
a AND b)

TABLE I

BINARY FUNCTIONS

VII. RESULTS

A. Restricted function set

First, we evolved even parity functions from 2 inputs to

20 inputs using Boolean functions: AND, OR, NAND and

NOR.

Table II shows the average number of evaluations required.

We obtained 100% success rate for evolving to 18 test cases

(up to 20 inputs). This is a substantial improvement over our

earlier published results where, after 5 inputs the success rate

dropped below 100% [7]. From the results, it can be seen

that the number of evaluations required to solve for a given

size stablises to approximately 318,000 evaluations. This is

because “general” solutions are often discovered by the time

even 6 parity is solved, and therefore solutions for larger

circuits do not need to be found by evolution.

Table III shows a comparison between other CGP imple-

mentations. The speed up values show the relative perfor-

mance in terms of evaluations. A value above 1 indicates

SMCGP performs better. The results show that for smaller

sizes, SMCGP is slower to evolve than the previous tech-

niques. For parity problems with more than 6 inputs, SMCGP

starts to perform better. It is important to note that these

other techniques do not report results beyond 8 inputs and

that the fitness function is different. We believe that the task

of finding a program that grows these circuits should be

substantially more difficult.

No. Of Inputs Average Evaluations

2 126,095
3 289,824
4 308,643
5 309,990
6 311,022
7 313,489
8 313,978
9 314,056
10 317,700
11 317,712
12 317,931
13 317,936
14 317,941
15 317,950
16 317,960
17 317,965
18 317,979
19 317,994
20 317,999

TABLE II

EVALUATIONS REQUIRED TO EVOLVE TO EACH SIZE, USING THE

RESTRICTED FUNCTION SET OF AND, OR, NAND AND NOR.

B. Full function set

We repeated the experiment but with a full function set

(BF0 to BF15) so that we could compare with [10].

Table IV shows the number of evaluations required to

evolve a given sized even parity circuit. Care should be taken

when comparing to other results in the literature, as we are

solving a subtly different problem. Our aim is to evolve a

program that can produce a parity circuit for a given size -

and all smaller sizes. Other approaches typically aim to find

a circuit for a given number of inputs; which probably makes

the problem easier, as their goals are a proper subset of ours.

Next, we investigated the scaling properties of the parity

circuit. We evolved to 20 bits of input and then tested

exhaustively to 24 bits of input. We find that solutions are

often able to scale to solve larger problems beyond what

they were evolved to solve. Table V shows the percentage of

solutions that were able to solve these additional problems.

See section VII-C for a more detailed investigation into the

generality of an individual.

We investigated the stage at which solutions start to act as

“general” solutions. By general we mean that they can solve

all subsequent test sizes up to 20 bits of input. We see that

some solutions can generalise after solving for just 2 inputs

cases (i.e. have been evolved to solve both 2 and 3 bits).

Table VI shows the percentage of solutions that generalise

to all 18 test sizes both at a given point, and cumulatively.

We see that the majority of the “general” solutions are found

between 5 and 7 bits of input. This explains why table IV

shows a stablisation in the number of evaluations required

to find a solution. On average, it takes until 12 inputs for

general solutions to emerge.

Results presented here are based on 251 runs.

We found that for the majority of the runs, the graph size

consistently increases in size. However, for some runs the

graph size does not maintain constant growth and either

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 289

Average Evaluations Speedup

Inputs SMCGP SMCGP 2007 CGP ECGP Vs. SMCGP2007 Vs.CGP Vs. ECGP

4 308,643 28,811 81,728 65,296 0.09 0.26 0.21

5 309,990 58,194 293,572 181,920 0.19 0.95 0.59

6 311,022 199,256 972,420 287,764 0.64 3.13 0.93

7 313,489 410,128 3,499,532 311,940 1.31 11.16 1.00

8 313,978 1,080,656 10,949,256 540,224 3.44 34.87 1.72

TABLE III

COMPARISON TO PREVIOUS CGP BASED TECHNIQUES, USING THE RESTRICTED FUNCTION SET OF AND, OR, NAND AND NOR. SMCGP2007 =

FIRST SMCGP PAPER [7]. ECGP = EMBEDDED CGP [19]. CGP = NORMAL CGP [7]

reduces in size or remains constant. Figure 3 shows the

behaviour trends as a whole.

Fig. 3. Plot showing the average, maximum and minimum graph length of
the SMCGP phenotype as it iterates with number of inputs (for the parity
problem).

C. Generality

It is computationally very expensive to evaluate individuals

greater than 24-inputs, therefore a method is needed to either

prove generality, or, provide a high degree of confidence

that a solution is general. A general solution is defined as

a program that when iterated will always produce the next

sized parity solution. We show that this is indeed the case

for one example.

Consider the individual illustrated in figure 4. Here we

prove that it is indeed the general solution to even-parity.

To begin with we need to show that the first case at the top

of the figure computes even-2 parity. In 5(a) we provide an

annotated version showing the outputs of the active nodes.

The leftmost active node is an INP which returns x0, the next

call to INP returns x1. These both connect to the leftmost

BXOR node which computes the binary EXOR of these

inputs. Two identical outputs from this BXOR are provided

as input to the function BNOR, this inverts the input (we

have denoted this as carrying out EXORing with 1). This

output is then provided as the first input to BXOR. We have

denoted the second input to this function as v (which in this

No. Of Inputs Average Evaluations

2 1,429
3 4,013
4 8,656
5 19,894
6 43,817
7 71,857
8 82,936
9 102,868
10 107,586
11 104,343
12 108,356
13 118,790
14 121,835
15 118,477
16 114,116
17 110,216
18 110,223
19 110,255
20 110,262

TABLE IV

EVALUATIONS REQUIRED TO EVOLVE TO EACH SIZE.

No. Of Inputs % Solution

21 97.1
22 96.1
23 96.1
24 96.0

TABLE V

PERCENTAGE OF SOLUTIONS THAT GENERALISE TO VARIOUS,

UN-EVOLVED INPUT LENGTHS.

case is zero, as the connection reaches 14 nodes back, which

is beyond the first node of the graph). Thus the output is now

x0 ⊕ x1 ⊕ 1 ⊕ v. The DUP function is a self-modification

instruction and is defined to return the first input, hence it

outputs this quantity. The final (rightmost) active node is

also BXOR and this EXORs with input u (which is 22

nodes back, which is again beyond the end of the graph

so returns zero). Thus the graph outputs B(x0, x1, u, v) =
x0 ⊕x1 ⊕ 1⊕ v⊕u. In this case this reduces to x0 ⊕x1⊕ 1,

which is the even-2 parity function.

Now we discuss the effect of the DUP operation, which

happens, in this case, to be the only active self modifying

node. This copies the 9 nodes on its left and itself (shown

within the box shown in figure 5(a). It inserts these nodes

twelve nodes back from itself. That is just before the node

290 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Fig. 4. An example of the development of a parity circuit. Each line shows the phenotype graph at a given time step. The first graph solves the 2-input
parity, the second solves 3-input and continues to 7-bits. The graph has been tested to generalise through to 24 inputs. This pattern of growth is typical of
the programs investigated.

No. Of Inputs % that generalise
at this step

Total perc. that
generalise by this
stage

2 0.00 0.00
3 0.97 0.97
4 10.68 11.65
5 23.30 34.95
6 24.27 59.22
7 14.56 73.79
8 7.77 81.55
9 3.88 85.44
10 4.85 90.29
11 1.94 92.23
12 0.97 93.20
13 1.94 95.15
14 0.00 95.15
15 0.00 95.15
16 0.00 95.15
17 1.94 97.09
18 0.00 97.09
19 1.94 99.03
20 0.97 100.00

TABLE VI

PERCENTAGE OF SOLUTIONS THAT GENERALISE AT A GIVEN INPUT SIZE.

BOR (the third node from the left). Now consider what

happens when we carry out this operation (shown in Figure

5(b)). The input denoted u of the even-2 parity function now

activates the INP node of the duplicated code and the v

input activates the BXOR input (immediately on its right).

The input makes u equal to x0. The inputs to the BXOR

function are actually 11 nodes back (first) and ten nodes back

(second), in this case they both reach beyond the end of the

graph and are therefore zero. Thus the v input to B is zero

and we obtain even-3 parity. We denote the sub-function of

copied nodes, after insertion as M(y0, y1), where y0 and y1

denote its inputs. In this case of even-3 parity this “module”

has two outputs, x0 and 0. This is shown in figure 5(b).

It is apparent that the structure of the leftmost ith copied

modules is given by Mi(y0, y1) = xi : y0 ⊕ y1, where the

colon denotes the two outputs of the module. We can see

this because the INP function inside provides a new program

input each time it is called (we begin at 0) and the BXOR

inside provides the EXOR of the two inputs. The general

case has the form of a series of n − 2 copied modules, M ,

connected to the even-2 parity function B. This is shown in

5(c). Thus the general parity solution is obtained.

VIII. CONCLUSIONS

We argue that self-modification is a unifying view of

development. Multi or single cellular systems and re-writing

systems can all be seen as forms of self-modification. In

multi-cellular systems, the cells modify the collection of cells

(i.e. through self-replication and differentiation). In single-

celled systems running a GRN, the genetic code changes

which pieces of code are expressed over time so that the

“genetic program” being run changes over time.

Self modifying Cartesian Genetic Programming has a

number of virtues. Cartesian GP is a general method for

program evolution and SMCGP builds on that because at

each iteration it represents a CGP graph. So in that sense

SMCGP is a general computational developmental system.

This is, in our view, one of the key strengths of the approach.

We have presented an improved version of SMCGP and

demonstrated that it can solve arbitrary parity problems. It

was also shown to require less computational effort to solve

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 291

Fig. 5. The general solution for n even parity. See section VII-C for discussion.

parity functions than either CGP or modular CGP. We have

applied it to a number of other problems with excellent

results and these will be published in due course.

REFERENCES

[1] W. Banzhaf, G. Beslon, S. Christensen, J. A. Foster, F. Kps, V. Lefort,
J. F. Miller, M. Radman, and J. J. Ramsden, “From artificial evolution
to computational evolution: A research agenda,” Nature Reviews

Genetics, vol. 7, pp. 729–735, 2006.
[2] G. Kampis, Self-modifying Systems in Biology and Cognitive Science.

Pergamon Press, 1991.
[3] L. Spector and K. Stoffel, “Ontogenetic programming,” in Genetic

Programming 1996: Proceedings of the First Annual Conference, J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds. Stanford
University, CA, USA: MIT Press, 28–31 1996, pp. 394–399.

[4] F. Gruau, “Neural network synthesis using cellular encoding and the
genetic algorithm.” Ph.D. dissertation, Laboratoire de l’Informatique
du Parallilisme, Ecole Normale Supirieure de Lyon, France, 1994.

[5] J. F. Miller and P. Thomson, “A developmental method for growing
graphs and circuits.” in ICES, ser. Lecture Notes in Computer Science,
A. M. Tyrrell, P. C. Haddow, and J. Torresen, Eds., vol. 2606.
Springer, 2003, pp. 93–104.

[6] S. Kumar and P. Bentley, On Growth, Form and Computers. Academic
Press, 2003.

[7] S. L. Harding, J. F. Miller, and W. Banzhaf, “Self-modifying cartesian
genetic programming,” in GECCO ’07: Proceedings of the 9th annual

conference on Genetic and evolutionary computation, D. Thierens, H.-
G. Beyer, and et al, Eds., vol. 1. London: ACM Press, 7-11 Jul. 2007,
pp. 1021–1028.

[8] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable

Programs. Cambridge Massachusetts: MIT Press, 1994.
[9] J. Koza, Genetic Programming: On the Programming of Computers

by Natural Selection. Cambridge, Massachusetts, USA: MIT Press,
1992.

[10] R. Poli and J. Page, “Solving high-order boolean parity problems with
smooth uniform crossover, sub-machine code gp and demes,” Genetic

Programming and Evolvable Machines, vol. 1, no. 1-2, pp. 37–56,
2000.

[11] L. Huelsbergen, “Finding general solutions to the parity problem by
evolving machine-language representations,” in Genetic Programming

1998: Proceedings of the Third Annual Conference, J. R. Koza,
W. Banzhaf, and et al., Eds. University of Wisconsin, Madison,
Wisconsin, USA: Morgan Kaufmann, 22-25 Jul. 1998, pp. 158–166.

[12] M. L. Wong and K. S. Leung, “Evolving recursive functions for
the even-parity problem using genetic programming,” in Advances in

Genetic Programming 2, P. J. Angeline and K. E. E. Kinnear, Jr., Eds.
Cambridge, MA, USA: MIT Press, 1996, ch. 11, pp. 221–240.

[13] M. L. Wong and T. Mun, “Evolving recursive programs by using
adaptive grammar based genetic programming,” Genetic Programming

and Evolvable Machines, vol. 6, no. 4, pp. 421–455, 2005.
[14] T.-H. Hoang, R. McKay, D. Essam, and X. H. Nguyen, “Developmen-

tal evaluation in genetic programming: A position paper,” Frontiers in

the Convergence of Bioscience and Information Technologies, 2007.

FBIT 2007, pp. 773–778, Oct. 2007.
[15] T. G. Gordon and P. J. Bentley, “Development brings scalability to

hardware evolution,” in EH ’05: Proceedings of the 2005 NASA/DoD

Conference on Evolvable Hardware. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 272–279.

[16] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Proc.

of EuroGP 2000, ser. LNCS, R. Poli and W. Banzhaf, et al.,, Eds., vol.
1802. Springer-Verlag, 2000, pp. 121–132.

[17] V. K. Vassilev and J. F. Miller, “The advantages of landscape neutrality
in digital circuit evolution,” in Proc. of ICES. Springer-Verlag, 2000,
vol. 1801, pp. 252–263.

[18] T. Yu and J. Miller, “Neutrality and the evolvability of boolean function
landscape,” in Proc. of EuroGP 2001, ser. LNCS, J. F. Miller and M. T.
et al., Eds., vol. 2038. Springer-Verlag, 2001, pp. 204–217.

[19] J. A. Walker and J. F. Miller, “Investigating the performance of
module acquisition in cartesian genetic programming,” in GECCO

’05: Proceedings of the 2005 conference on Genetic and evolutionary

computation. New York, NY, USA: ACM, 2005, pp. 1649–1656.

292 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

